Just same old square

Geometry Level 3

A B C D ABCD is a square. Given P A = 1 PA = 1 ; P B = 3 PB = 3 and P D = 7 PD = \sqrt 7 , find the area of square A B C D ABCD .

Note: The image is not drawn to scale.

10 + 14 10+\sqrt{14} 8 + 16 8+\sqrt{16} 8 + 14 8+\sqrt{14} 10 + 16 10+\sqrt{16}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Mark Hennings
Aug 27, 2018

If α = P A B \alpha = \angle PAB and β = P A D \beta = \angle PAD , then cos α = 1 + X 2 9 2 X = X 2 8 2 X cos β = 1 + X 2 7 2 X = X 2 6 2 X \cos\alpha \; = \; \frac{1 + X^2 - 9}{2X} \; = \; \frac{X^2-8}{2X} \hspace{2cm} \cos\beta \; = \; \frac{1 + X^2 - 7}{2X} \; = \; \frac{X^2-6}{2X} where X X is the side of the square. Since α + β = 1 2 π \alpha + \beta = \tfrac12\pi , we see that 1 = cos 2 α + cos 2 β 4 X 2 = ( X 2 8 ) 2 + ( X 2 6 ) 2 X 4 16 X 2 + 50 = 0 ( X 2 8 ) 2 = 14 \begin{aligned} 1 & = \; \cos^2\alpha + \cos^2\beta \\ 4X^2 & = \; (X^2-8)^2 + (X^2-6)^2 \\ X^4 - 16X^2 + 50 & = \; 0 \\ (X^2 - 8)^2 & = \; 14 \end{aligned} Since α \alpha is acute, we must have X 2 > 8 X^2 > 8 , and hence X 2 = 8 + 14 X^2 = \boxed{8 + \sqrt{14}} .

jay bharat

mukesh maurya - 2 years, 9 months ago
Hassan Abdulla
Aug 30, 2018

draw the square on the x-y plane L is the side length

B = ( 0 , 0 ) ; A = ( 0 , L ) ; D = ( L , L ) ; P = ( a , b ) P B 2 = a 2 + b 2 = 9 ( 1 ) P A 2 = a 2 + ( L b ) 2 = 1 ( 2 ) P D 2 = ( L a ) 2 + ( L b ) 2 = 7 ( 3 ) ( 1 ) ( 2 ) b = L 2 + 8 2 L ( 3 ) ( 2 ) a = L 2 6 2 L B=\left ( 0,0 \right ) ; A=\left ( 0,L \right ) ;D=\left ( L,L \right ) ; P=\left ( a,b \right ) \\ \left | \overline{ PB} \right |^2 = a^2+b^2=9\rightarrow (1)\\ \left | \overline{ PA} \right |^2 = a^2+\left ( L-b \right )^2=1\rightarrow (2)\\ \left | \overline{ PD} \right |^2 = \left ( L-a \right )^2+\left ( L-b \right )^2=7\rightarrow (3)\\ (1)-(2)\Rightarrow b=\frac{L^2+8}{2L}\\ (3)-(2)\Rightarrow a=\frac{L^2-6}{2L}

substitute the value of a and b in (1)

( L 2 6 ) 2 + ( L 2 + 8 ) 2 4 L 2 = 9 L 4 16 L 2 + 50 = 0 L 2 = 8 ± 14 L = 8 14 d i a g o n a l = 2 8 14 < 3 d i a g o n a l < P A 8 14 r e j e c t e d \frac{\left ( L^2-6 \right )^2+\left (L^2+8 \right )^2}{4L^2}=9\\ L^4-16L^2+50=0\Rightarrow L^2=8\pm \sqrt{14} \\ \color{#D61F06} L=\sqrt{8-\sqrt{14}}\Rightarrow diagonal=\sqrt{2} \cdot \sqrt{8-\sqrt{14}}<3 \\ \color{#D61F06} diagonal<\left | \overline {PA}\right |\Rightarrow 8-\sqrt{14} rejected

Typical Beam
Sep 9, 2018

Rotate triangle Δ A P D \Delta APD about A A by a right angle in the anticlockwise direction. Then D D lands on B B . Let P P land on some P P' . Join P P to P P' .

Then, Δ P A P \Delta PAP' is an isoceles right-angled triangle right-angled at A A , and P P = 2 PP' = \sqrt{2} .

This also means P B P PBP' is a right-angled triangle, right-angled at P P' , due to Pythagoras' Theorem, as P P 2 + P B 2 = 7 + 2 = 9 = P B 2 PP'^2 + P'B^2 = 7+2=9=PB^2 .

Thus A P B = A P P + P P B = 4 5 + 9 0 = 13 5 \angle AP'B = \angle AP'P + \angle PP'B = 45^{\circ} + 90^{\circ} = 135^{\circ}

so A B 2 = P A 2 + P B 2 2 P A P B cos A P B = 8 + 14 AB^2 = P'A^2 + P'B^2 - 2 \cdot P'A \cdot P'B \cdot \cos \angle AP'B = 8+\sqrt{14}

Edwin Gray
Aug 29, 2018

From point P, draw perpendicular lines from P to AD (=x), and P to AB(= y). We then have the three equations: (1) x^2 + y^2 = 1. (2) (S - y)^2 + x^2 = 7, and (3) (S - x)^2 + y^2 = 9, where S= side of the square. Expanding (2) and (3),and substituting (1), we have the equations: S^2 - 2Sy - 6 = 0 and S^2 - 2Sx - 8 = 0 So 2Sy = S^2 - 6 and 2Sx = S^2 - 8. Multiplying, 4S^2 xy = S^4 - 14S^2 + 48. By subtracting the 2 equations, we have 1 = S(y - x). Squaring, 1 = S^2(y^2 - 2xy + y^2). Usung x^2 + y^2 =1, 1 = S^2 (1 - 2xy) = S^2 - 2S^2 xy. Multiplying by 2, and transposing, 4S^2*xy = 2S^2 - 2.We now have 2 expressions for 4xyS^2. Equating them, we have: 2S^2 - 2 = S^4 - 14S^2 + 48. Transposing, we have S^4 - 16S^2 + 50 = 0, a quadratic equation in S^2, with solution S^2 = [16 +/- sqrt(256 - 200)]/2, or S^2 = 8 + sqrt(14). Ed Gray

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...