Just "simple" Ineq #2

Algebra Level 4

Let x , y , z x, y, z be real numbers so that 0 x , y , z 3 2 0 \le x, y, z \le \frac 32 and x + y + z = 3 x + y + z = 3 . Find the maximum value of x 3 + y 3 + z 3 + 4 x y z x^{3} + y^{3} + z^{3} + 4xyz .

Write your answer to 5 decimal places.


The answer is 7.59375.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let f ( x , y , z ) = x 3 + y 3 + z 3 + 4 x y z f(x,y,z)=x^3+y^3+z^3+4xyz with the constraints 0 x , y , z 3 2 0\le x,y,z \le \dfrac{3}{2} and x + y + z = 3 x+y+z=3 . It is needless saying that the function is increasing although we may observe that , f ( x , y , z ) f ( x , y , x + y ) = z 3 ( x + y ) 3 + 4 x y ( z x y ) f(x,y,z)-f(x,y,x+y) = z^3 -(x+y)^3 + 4xy(z-x-y) . Now if we assume z x + y z\le x+y then it follows that f ( x , y , z ) f ( x , y , x + y ) f(x,y,z)\le f(x,y,x+y) which again establishes that z x + y z\le x+y must hold. So we get z = 3 2 z=\dfrac{3}{2} and left with the constraint x + y = 3 2 x+y=\dfrac{3}{2} to maximize f ( x , y , 3 / 2 ) f(x,y,3/2) .

Since f ( x , y , 3 / 2 ) = 27 8 + x 3 + y 3 + 6 x y f(x,y,3/2)=\dfrac{27}{8}+x^3+y^3+6xy with 2 ( x + y ) = 3 2(x+y)=3 we would show that the maximum is achieved at x = y x=y . It is easy to see that f ( x , y , 3 / 2 ) = 27 8 + x 3 + y 3 + 6 x y = 27 4 + 3 x y 2 27 4 + 3 8 ( x + y ) 2 = 243 32 f(x,y,3/2)=\dfrac{27}{8}+x^3+y^3+6xy=\dfrac{27}{4}+\dfrac{3xy}{2} \le \dfrac{27}{4}+\dfrac{3}{8}(x+y)^2 =\dfrac{243}{32} where equality holds iff x = y = 3 4 x=y=\dfrac{3}{4} . Thus we conclude that f max = 243 32 7.59375 f_{\text{max}} = \dfrac{243}{32}\approx \boxed{7.59375} at ( x , y , z ) = ( 3 4 , 3 4 , 3 2 ) (x,y,z)=\left(\dfrac{3}{4},\dfrac{3}{4},\dfrac{3}{2}\right) .

Nice solution!

Steven Jim - 4 years ago

Is there any other way for solving it....I wanna know..

Anubhav Mahapatra - 3 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...