Just sin ( x + sin ( x + . . . ) ) \sin(x+\sin(x+...))

Calculus Level 3

Find the lowest value of the gradient of sin ( x + sin ( x + sin ( x + ) ) ) \sin(x+\sin(x + \sin(x + \dots)))


The answer is -0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ryan S
May 18, 2020

y = sin ( x + y ) y=\sin(x+y)

d y d x = cos ( x + y ) ( 1 + d y d x ) \frac{dy}{dx}=\cos(x+y)\left(1+\frac{dy}{dx}\right)

= cos ( x + y ) 1 cos ( x + y ) =\frac{\cos(x+y)}{1-\cos(x+y)}

q 1 q for 1 q 1 strictly increases \frac{q}{1-q}\text{ for }-1\leq q\leq1\text{ strictly increases}

Therefore, its lowest value is 1 1 1 = 0.5 \text{Therefore, its lowest value is }\frac{-1}{1--1}=-0.5

Chew-Seong Cheong
May 19, 2020

Let u = sin ( x + sin ( x + sin ( x + ) ) ) u=\sin(x + \sin (x + \sin (x + \cdots ))) . Then

u = sin ( x + u ) d u d x = cos ( x + u ) + cos ( x + u ) d u d x By chain rule d u d x = cos ( x + u ) 1 cos ( x + u ) By half-angle tangent substitution = 1 t 2 1 + t 2 1 1 t 2 1 + t 2 = 1 t 2 2 t 2 and let t = tan x + u 2 = 1 2 t 2 1 2 0.5 Minimum occurs when t \begin{aligned} u & = \sin(x + u) \\ \frac {du}{dx} & = \cos (x+u) + \cos (x+u)\frac {du}{dx} & \small \blue{\text{By chain rule}} \\ \implies \frac {du}{dx} & = \frac {\cos (x+u)}{1-\cos (x+u)} & \small \blue{\text{By half-angle tangent substitution}} \\ & = \frac {\frac {1-t^2}{1+t^2}}{1-\frac {1-t^2}{1+t^2}} = \frac {1-t^2}{2t^2} & \small \blue{\text{and let }t = \tan \frac {x+u}2} \\ & = \frac 1{2t^2} - \frac 12 \ge \boxed{-0.5} & \small \blue{\text{Minimum occurs when }t \to \infty} \end{aligned}

Reference: Half-angle tangent substitution

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...