Find the lowest value of the gradient of sin ( x + sin ( x + sin ( x + … ) ) )
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let u = sin ( x + sin ( x + sin ( x + ⋯ ) ) ) . Then
u d x d u ⟹ d x d u = sin ( x + u ) = cos ( x + u ) + cos ( x + u ) d x d u = 1 − cos ( x + u ) cos ( x + u ) = 1 − 1 + t 2 1 − t 2 1 + t 2 1 − t 2 = 2 t 2 1 − t 2 = 2 t 2 1 − 2 1 ≥ − 0 . 5 By chain rule By half-angle tangent substitution and let t = tan 2 x + u Minimum occurs when t → ∞
Reference: Half-angle tangent substitution
Problem Loading...
Note Loading...
Set Loading...
y = sin ( x + y )
d x d y = cos ( x + y ) ( 1 + d x d y )
= 1 − cos ( x + y ) cos ( x + y )
1 − q q for − 1 ≤ q ≤ 1 strictly increases
Therefore, its lowest value is 1 − − 1 − 1 = − 0 . 5