Just some random sum

Algebra Level 3

1 × 2 3 + 2 × 3 3 2 + 3 × 4 3 3 + 4 × 5 3 4 + = ? \dfrac { 1\times 2 }{ 3 } +\dfrac { 2\times 3 }{ { 3 }^{ 2 } } +\dfrac { 3\times 4 }{ { 3 }^{ 3 } } +\dfrac { 4\times 5 }{ { 3 }^{ 4 } }+ \cdots = \, ?

1 9 \frac 19 1 1 1 3 \frac 13 1 2 \frac 12 9 4 \frac 94

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Sep 17, 2016

Let S = 1 × 2 3 + 2 × 3 3 2 + 3 × 4 3 3 + 4 × 5 3 4 + . . . \displaystyle S = \frac {1\times 2}3 + \frac{2 \times 3}{3^2} + \frac {3 \times 4}{3^3} + \frac {4\times 5}{3^4} + ... , then let us consider the following.

1 1 x = 1 + x + x 2 + x 3 + . . . Multiply both sides by x 2 x 2 1 x = x 2 + x 3 + x 4 + x 5 + . . . Differentiate w.r.t. x 2 x x 2 ( 1 x ) 2 = 2 x + 3 x 2 + 4 x 3 + 5 x 4 + . . . Differentiate w.r.t. x again 2 ( 1 x ) 3 = 1 × 2 + 2 × 3 x + 3 × 4 x 2 + 4 × 5 x 3 + . . . Multiply by x 2 x ( 1 x ) 3 = 1 × 2 x + 2 × 3 x 2 + 3 × 4 x 3 + 4 × 5 x 4 + . . . Put x = 1 3 2 3 ( 1 1 3 ) 3 = 1 × 2 3 + 2 × 3 3 2 + 3 × 4 3 3 + 4 × 5 3 4 + . . . = S \begin{aligned} \frac 1{1-x} & = 1 + x + x^2 + x^3 + ... & \small \color{#3D99F6}{\text{Multiply both sides by }x^2} \\ \frac {x^2}{1-x} & = x^2 + x^3 + x^4 + x^5 + ... & \small \color{#3D99F6}{\text{Differentiate w.r.t. }x} \\ \frac {2x-x^2}{(1-x)^2} & = 2x + 3x^2 + 4x^3 + 5x^4 + ... & \small \color{#3D99F6}{\text{Differentiate w.r.t. }x \text{ again}} \\ \frac 2{(1-x)^3} & = 1\times 2 + 2 \times 3x + 3 \times 4x^2 + 4\times 5x^3 + ... & \small \color{#3D99F6}{\text{Multiply by }x} \\ \frac {2x}{(1-x)^3} & = 1\times 2x + 2 \times 3x^2 + 3 \times 4x^3 + 4\times 5x^4 + ... & \small \color{#3D99F6}{\text{Put }x = \frac 13} \\ \frac {\frac 23}{\left(1-\frac 13\right)^3} & = \frac {1\times 2}3 + \frac{2 \times 3}{3^2} + \frac {3 \times 4}{3^3} + \frac {4\times 5}{3^4} + ... \color{#3D99F6}{= S} \end{aligned}

S = 2 3 ( 1 1 3 ) 3 = 2 3 × ( 3 2 ) 3 = 9 4 \implies S = \dfrac {\frac 23}{\left(1-\frac 13\right)^3} = \dfrac 23 \times \left(\dfrac {3}{2}\right)^3 = \boxed{\dfrac 94}

Woah nice!!! I solved mine by adding the first three terms seeing it is greater than 1 shows the limit is definitely greater than 1 so, the last option.

ADAMS AYOADE - 4 years, 9 months ago

Log in to reply

Exact thing I did also. 2/3 + 2/3 = 4/3. Since L > 1, then the answer is 9/4.

Lance Fernando - 4 years, 8 months ago

Thanks for the nice solution.

Niranjan Khanderia - 4 years, 8 months ago

@Chew-Seong Cheong Sir, what made you think of this solution? (It's very pretty!)

Jessica Wang - 4 years, 8 months ago

Log in to reply

Thanks. Unsure whether I learned it in school or discovered it solving similar problems in Brilliant. But it is surely useful for solving problems like this one. Enjoy solving problems on Brilliant.

Chew-Seong Cheong - 4 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...