Just something cool I found today in Class

Algebra Level 2

1 2 3 4 1 a b c 1 2 d e f 1 3 g h i 1 4 x 1 1 y \quad \begin{array}{ c | c c c c c c c} & 1 & 2 & 3 & 4 \\ \hline \\ 1 & \text{a} & \text{b} & \text{c} & 1 \\ 2 & \text{d} & \text{e} & \text{f} & 1 \\ 3 & \text{g} & \text{h} & \text{i} & 1 \\ 4 & \text{x} & 1 & 1 & \text{y} \\ \end{array}

Cells ( 1 , 4 ) (1,4) , ( 2 , 4 ) (2,4) , and ( 3 , 4 ) (3,4) represent the sum of the values in rows 1,2, and 3 respectively.

Columns ( 4 , 1 ) (4,1) , ( 4 , 2 ) (4,2) , and ( 4 , 3 ) (4,3) represent the sum of the values in columns 1,2 and 3 respectively.

Find the value of x \text{x}

Details and Assumptions

( p , q ) (p,q) represents row p p column q q .

a a is in cell ( 1 , 1 ) (1,1) .

2 0 Can not be determined 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Trevor Arashiro
Mar 31, 2016

( i ) a + d + g = x (i)~~\color{#20A900}{a+d+g}\color{#69047E}{=x}

( i i ) a + b + c = 1 (ii)~~\color{#20A900}{a}+\color{#D61F06}{b}+\color{#3D99F6}{c}=1

( i i i ) d + e + f = 1 (iii)~~\color{#20A900}{d}+\color{#D61F06}{e}+\color{#3D99F6}{f}=1

( i v ) g + h + i = 1 (iv)~~\color{#20A900}{g}+\color{#D61F06}{h}+\color{#3D99F6}{i}=1

( v ) b + e + h = 1 (v)~~\color{#D61F06}{b+e+h=1}

( v i ) c + f + i = 1 (vi)~~\color{#3D99F6}{c+f+i=1}

Summing equations ( i i ) , ( i i i ) , ( i v ) (ii),(iii),(iv)

a + b + c + d + e + f + g + h + i = 3 \color{#20A900}{a}+\color{#D61F06}{b}+\color{#3D99F6}{c}+\color{#20A900}{d}+\color{#D61F06}{e}+\color{#3D99F6}{f}+\color{#20A900}{g}+\color{#D61F06}{h}+\color{#3D99F6}{i}=3

a + d + g + b + e + h + c + f + i = 3 \color{#20A900}{a+d+g}+\color{#D61F06}{b+e+h}+\color{#3D99F6}{c+f+i}=3

x + 1 + 1 = 3 \color{#69047E}{x}+\color{#D61F06}{1}+\color{#3D99F6}{1}=3

x = 1 \boxed{\color{#69047E}{x=1}}

Hung Woei Neoh
Apr 22, 2016

Notice that the sum of the 9 numbers a + b + c + d + e + f + g + h + i a+b+c+d+e+f+g+h+i is equivalent to:

-The sum of ( 1 , 4 ) , ( 2 , 4 ) (1,4), (2,4) and ( 3 , 4 ) (3,4)

-The sum of ( 4 , 1 ) , ( 4 , 2 ) (4,1), (4,2) and ( 4 , 3 ) (4,3)

Therefore,

1 + 1 + 1 = x + 1 + 1 x = 1 1+1+1 = x+1+1 \implies x=\boxed{1}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...