Just Stick To The Basics...Or Don't

Calculus Level 5

Given

0 sin 3 x x e x d x = a π b tan 1 ( c ) d , \int_{0}^{\infty} \dfrac{\sin^3{x}}{x \cdot e^x} dx=\dfrac{a\pi}{b}-\dfrac{\tan^{-1} (c)}{d},

find the value of a + b + c + d . a+b+c+d.


The answer is 26.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Using sin 3 x = 3 sin x sin 3 x 4 \sin^3x=\frac{3\sin x-\sin 3x}{4} , we can rewrite the integral as 3 4 0 e x sin x x d x 1 4 0 e x sin 3 x x d x \frac{3}{4}\int_0^\infty \frac{e^{-x}\sin x}{x}\,dx-\frac{1}{4}\int_0^\infty \frac{e^{-x}\sin 3x}{x}\,dx Now, consider I a ( b ) = 0 e a x sin b x x d x , where a > 0 I_a(b)=\int_0^\infty \frac{e^{-ax}\sin bx}{x}\,dx\qquad,\qquad\mbox{where}\,\,a>0 so that I a ( 0 ) = 0 I_a(0)=0 . Differentiating w.r.t. b b and then integrating back, we have I a ( b ) = 0 e a x cos b x d x = a a 2 + b 2 I a ( b ) = a a 2 + b 2 d b = arctan ( b a ) + C \begin{aligned} I_a'(b)&=\int_0^\infty e^{-ax}\cos bx\,dx\\ &=\frac{a}{a^2+b^2}\\ I_a(b)&=\int\frac{a}{a^2+b^2}\,db\\ &=\arctan\left(\frac{b}{a}\right)+C \end{aligned} Since I a ( 0 ) = 0 I_a(0)=0 , then C = 0 C=0 . Our original integral is 0 e x sin 3 x x d x = 3 4 I 1 ( 1 ) 1 4 I 1 ( 3 ) = 3 4 arctan ( 1 ) 1 4 arctan ( 3 ) = 3 π 16 arctan ( 3 ) 4 \begin{aligned} \int_0^\infty \frac{e^{-x}\sin^ 3x}{x}\,dx&=\frac{3}{4}I_1(1)-\frac{1}{4}I_1(3)\\ &=\frac{3}{4}\arctan(1)-\frac{1}{4}\arctan(3)\\ &=\frac{3\pi}{16}-\frac{\arctan(3)}{4} \end{aligned}

Anastasiya Romanova \quad\color{#D61F06}{\Rightarrow}\qquad Romanov's Integral

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...