Just Sum Fourier

Calculus Level 3

n = 0 1 ( 2 n + 1 ) 2 = π a b \large \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} = \frac{\pi^a}{b}

Enter your answer as a × b a\times b .

Hint: Consider the Fourier series of x |x| .


The answer is 16.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Chew-Seong Cheong
Apr 25, 2019

n = 0 1 ( 2 n + 1 ) 2 = 1 1 2 + 1 3 2 + 1 5 2 + 1 7 2 + 1 9 2 + 1 1 1 2 + = ( 1 1 2 + 1 2 2 + 1 3 2 + 1 4 2 ) ( 1 2 2 + 1 4 2 + 1 6 2 + 1 8 2 + ) = ( 1 1 2 + 1 2 2 + 1 3 2 + 1 4 2 ) 1 4 ( 1 1 2 + 1 2 2 + 1 3 2 + 1 4 2 ) = 3 4 ( 1 1 2 + 1 2 2 + 1 3 2 + 1 4 2 ) Since Riemann zeta function ζ ( s ) = n = 1 1 n s = 3 4 ζ ( 2 ) = 3 4 × π 2 6 = π 2 8 and ζ ( 2 ) = π 2 6 (see reference) \begin{aligned} \sum_{n=0}^\infty \frac 1{(2n+1)^2} & = \frac 1{1^2} + \frac 1{3^2} + \frac 1{5^2} + \frac 1{7^2} + \frac 1{9^2} + \frac 1{11^2} +\cdots \\ & = \left(\frac 1{1^2} + \frac 1{2^2} + \frac 1{3^2} + \frac 1{4^2} \cdots \right) - \left(\frac 1{2^2} + \frac 1{4^2} + \frac 1{6^2} + \frac 1{8^2} + \cdots \right) \\ & = \left(\frac 1{1^2} + \frac 1{2^2} + \frac 1{3^2} + \frac 1{4^2} \cdots \right) - \frac 14 \left(\frac 1{1^2} + \frac 1{2^2} + \frac 1{3^2} + \frac 1{4^2} \cdots \right) \\ & = \frac 34 \color{#3D99F6} \left(\frac 1{1^2} + \frac 1{2^2} + \frac 1{3^2} + \frac 1{4^2} \cdots \right) & \small \color{#3D99F6} \text{Since Riemann zeta function } \zeta(s) = \sum_{n=1}^\infty \frac 1{n^s} \\ & = \frac 34 {\color{#3D99F6} \zeta (2)} = \frac 34 \times {\color{#3D99F6} \frac {\pi^2}6} = \frac {\pi^2}8 & \small \color{#3D99F6} \text{and } \zeta(2) = \frac {\pi^2}6 \text{ (see reference)} \end{aligned}

Therefore, a b = 2 × 8 = 16 ab = 2\times 8 = \boxed{16} .


Reference: Riemann zeta function

Anirudh Sreekumar
Apr 25, 2019

ζ ( x ) = n = 1 1 n x ζ ( 2 ) = n = 1 1 n 2 = π 2 6 1 4 ζ ( 2 ) = n = 1 1 ( 2 n ) 2 ζ ( 2 ) 1 4 ζ ( 2 ) = n = 1 1 n 2 1 ( 2 n ) 2 all terms with even denominators will be cancelled out 3 4 ζ ( 2 ) = n = 0 1 ( 2 n + 1 ) 2 n = 0 1 ( 2 n + 1 ) 2 = 3 π 2 4 6 = π 2 8 a = 2 , b = 8 a b = 2 × 8 = 16 \begin{aligned}\zeta(x)&={\large\sum}_{n=1}^{\infty}\hspace{2mm}\dfrac{1}{n^x}\\\\ \zeta(2)&={\large\sum}_{n=1}^{\infty}\hspace{2mm}\dfrac{1}{n^2}=\dfrac{{\pi}^2}{6}\\ \dfrac{1}{4}\zeta(2)&={\large\sum}_{n=1}^{\infty}\hspace{2mm}\dfrac{1}{(2n)^2}\\ \zeta(2)-\dfrac{1}{4}\zeta(2)&={\large\sum}_{n=1}^{\infty}\hspace{2mm}\dfrac{1}{n^2}-\dfrac{1}{(2n)^2}\hspace{4mm}\color{#3D99F6}\small\text{all terms with even denominators will be cancelled out}\\ \dfrac{3}{4}\zeta(2)&={\large\sum}_{n=0}^{\infty}\hspace{2mm}\dfrac{1}{(2n+1)^2}\\ \implies{\large\sum}_{n=0}^{\infty}\hspace{2mm}\dfrac{1}{(2n+1)^2}&=\dfrac{3\pi^2}{4\cdot6}\\ &=\dfrac{\pi^2}{8}\\ a&=2,b=8\\ ab&=2\times8=\color{#EC7300}\boxed{\color{#333333}16}\end{aligned}

William Allen
Apr 25, 2019

a n = 1 π π π x C o s ( n x ) d x a_{n}=\frac{1}{\pi}\displaystyle \int_{-\pi}^{\pi} |x|Cos(nx) dx . The integrand is even so we get. a n = 2 π 0 π x C o s ( n x ) d x = 2 ( ( 1 ) n 1 ) n 2 π x 0 = π a_{n}=\frac{2}{\pi}\displaystyle \int_{0}^{\pi} xCos(nx) dx = \frac{2((-1)^n-1)}{n^2\pi} \implies x_{0}=\pi .

x = π 2 + 2 π n = 1 ( 1 ) n 1 n 2 C o s ( n x ) |x|= \frac{\pi}{2} + \frac{2}{\pi} \displaystyle \sum_{n=1}^{\infty} \frac{(-1)^n-1}{n^2}Cos(nx) on ( π , π ) (-\pi,\pi) and the periodic extension of x |x| is continuous at x = π x=\pi

π = π 2 + 2 π n = 1 1 ( 1 ) n n 2 π 2 4 = n = 1 1 ( 1 ) n n 2 \implies \pi = \frac{\pi}{2} + \frac{2}{\pi} \displaystyle \sum_{n=1}^{\infty} \frac{1-(-1)^n}{n^2}\ \implies \frac{\pi^2}{4} = \displaystyle \sum_{n=1}^{\infty} \frac{1-(-1)^n}{n^2}

For even n n , 1 ( 1 ) n n 2 = 0 \frac{1-(-1)^n}{n^2}=0 so we need only consider odd n n .

π 2 4 = n = 0 2 ( 2 n + 1 ) 2 \frac{\pi^2}{4} = \displaystyle \sum_{n=0}^{\infty} \frac{2}{(2n+1)^2}

n = 0 1 ( 2 n + 1 ) 2 = π 2 8 a = 2 , b = 8 \implies \displaystyle \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} = \frac{\pi^2}{8} \implies a=2, b=8

Finally a × b = 2 × 8 = 16 a\times b = 2\times 8 = \boxed{16} .

It's actually ((π^2)/8)

@Alak Bhattacharya 2 × 8 = 16 2\times 8 =16

William Allen - 2 years, 1 month ago

Log in to reply

Precisely. Here a=2 and b=8.

A Former Brilliant Member - 2 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...