Find the sum of the two real values of satisfying the equation above.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
We note that for x ≤ 0 , lo g 2 x 3 and lo g x 4 in the LHS of the equation are undefined. For 0 < x < 2 , the RHS < 0 but the LHS > 0 , therefore, there is no real root in 0 < x < 2 . For x = 0 , the LHS = 0 − 3 which is undefined. Therefore, the real roots are in x > 2 . Then we have:
∣ x − 2 ∣ lo g 2 x 3 − 3 lo g x 4 ( x − 2 ) lo g 2 x 3 − 3 lo g x 4 = ( x − 2 ) 3 For x > 2 , ∣ x − 2 ∣ = x − 2 = ( x − 2 ) 3 ⇒ { x − 2 = 1 ⇒ x = 3 lo g 2 x 3 − 3 lo g x 4 = 3 . . . ( 1 ) . . . ( 2 )
( 2 ) : lo g 2 x 3 − 3 lo g x 4 3 lo g 2 x − 3 lo g 2 x lo g 2 2 2 lo g 2 x − lo g 2 x 2 lo g 2 2 x − lo g 2 x − 2 ( lo g 2 x − 2 ) ( lo g 2 x + 1 ) ⇒ lo g 2 x ⇒ x = 3 = 3 = 1 = 0 = 0 = 2 lo g 2 x > 0 = 4
Therefore, the sum of roots = 3 + 4 = 7