A geometry problem by Mohammad Hamdar

Geometry Level pending

A = k = 1 99 ( 2 sin 4 x + 2 cos 2 x + sin 2 2 x 2 ) k \large A=\sum_{k=1}^{99} \left( 2\sin ^4 x +2\cos^2 x +\frac { \sin ^2 2x }2\right)^k

Find A 4 49 \left\lceil \frac { A }{ { 4 }^{ 49 } } \right\rceil .


Notation: \lceil \cdot \rceil denotes the ceiling function .

6 + 32 + 6 32 \sqrt { 6+\sqrt { 32 } } +\sqrt { 6-\sqrt { 32 } } 1 + 5 3 \frac { 1+\sqrt { 5 } }{ 3 } 4 + 35 + 4 35 \sqrt { 4+\sqrt { 35 } } +\sqrt { 4-\sqrt { 35 } } None of the others

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mohammad Hamdar
Feb 18, 2017

First thing, Let I = 2 sin 4 x + 2 cos 2 x + sin 2 2 x 2 I=2\sin ^{ 4 }{ x } +2\cos ^{ 2 }{ x } +\frac { \sin ^{ 2 }{ 2x } }{ 2 } . Adding c o s 4 x cos 4 x cos ^{ 4 }{ x } -\cos ^{ 4 }{ x } to I I we get, I = ( sin 4 x + cos 4 x + sin 2 2 x 2 ) + ( sin 4 x cos 4 x + 2 cos 2 x ) I=(\sin ^{ 4 }{ x } +\cos ^{ 4 }{ x } +\frac { \sin ^{ 2 }{ 2x } }{ 2 } )+(\sin ^{ 4 }{ x } -\cos ^{ 4 }{ x } +2\cos ^{ 2 }{ x } ) = ( sin 2 x + cos 2 x ) 2 + ( ( 1 cos 2 x ) 2 cos 4 x + 2 cos 2 x ) ={ (\sin ^{ 2 }{ x } +\cos ^{ 2 }{ x } ) }^{ 2 }+({ (1-\cos ^{ 2 }{ x } ) }^{ 2 }-\cos ^{ 4 }{ x } +2\cos ^{ 2 }{ x } ) = 1 + 1 = 2 =1+1=2 . Therefore, A = k = 1 99 2 k = 2 100 2 A=\sum _{ k=1 }^{ 99 }{ { 2 }^{ k } } ={ 2 }^{ 100 }-2 and so, A 4 49 = 4 \left\lceil \frac { A }{ { 4 }^{ 49 } } \right\rceil =4 . Looking through the answers we notice that 6 + 32 + 6 32 = 4 \sqrt { 6+\sqrt { 32 } } +\sqrt { 6-\sqrt { 32 } } =4

Let r = 6 + 32 + 6 32 r= \sqrt { 6+\sqrt { 32 } } +\sqrt { 6-\sqrt { 32 } } then, r 2 = ( 6 + 32 ) + ( 6 32 ) + 2 6 + 32 6 32 = 12 + 2 6 2 32 = 16 { r }^{ 2 }=(6+\sqrt { 32 } )+(6-\sqrt { 32 } )+2\sqrt { 6+\sqrt { 32 } } \sqrt { 6-\sqrt { 32 } } =12+2\sqrt { { 6 }^{ 2 }-32 } =16 and as r 0 , t h e n r = 4 r\ge 0,then\quad r=4

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...