Just throw the "barriers" away!

Algebra Level 3

Let x , y x,y be real non-zero numbers such that x y > 0 xy>0 . Find the minimum value of

( x + 1 x ) ( x + 1 y ) + ( y + 1 y ) ( y + 1 x ) \large \left(x+ \frac 1x \right)\left(x+ \frac 1y\right)+\left(y+ \frac 1y \right)\left(y+ \frac 1x\right)

Inspiration.


The answer is 8.0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Aug 11, 2017

Because to the condition x y > 0 xy>0 , both x x and y y must be both positive and negative and either case will lead to the same minimum positive value of the expression. Hence we can consider x , y > 0 x, y > 0 and use AM-GM inequality as follows.

( x + 1 x ) ( x + 1 y ) + ( y + 1 y ) ( y + 1 x ) = x 2 + x y + 1 + 1 x y + y 2 + y x + 1 + 1 x y = x 2 + y 2 + 2 x y + x y + y x + 2 \begin{aligned} \left(x + \frac 1x \right)\left(x + \frac 1y \right) + \left(y + \frac 1y \right)\left(y + \frac 1x \right) & = x^2 + \frac xy + 1 + \frac 1{xy} + y^2 + \frac yx + 1 + \frac 1{xy} \\ & = x^2 + y^2 + \frac 2{xy} + \frac xy + \frac yx + 2 \end{aligned}

x 2 + y 2 + 2 x y + x y + y x + 2 2 x 2 y 2 + 2 x y + 2 x y y x + 2 2 x y + 2 x y + 2 + 2 2 2 x y 2 x y + 2 + 2 4 + 2 + 2 = 8 \begin{aligned} {\color{#3D99F6}x^2 + y^2} + \frac 2{xy} + {\color{#D61F06}\frac xy + \frac yx} + 2 & \ge {\color{#3D99F6}2\sqrt{x^2y^2}} + \frac 2{xy} + {\color{#D61F06}2 \sqrt{\frac xy \cdot \frac yx}} + 2 \\ & \ge {\color{#3D99F6}2xy} + \frac 2{xy} + {\color{#D61F06}2} + 2 \\ & \ge 2\sqrt{2xy \cdot \frac 2{xy}} + 2 + 2 \\ & \ge 4 + 2 + 2 = \boxed{8} \end{aligned}

Equality occurs when x = y = ± 1 x=y= \pm 1 .

Steven Jim
Aug 11, 2017

Note that x > 0 , y > 0 x>0,y>0 or x < 0 , y < 0 x<0,y<0 . If x < 0 , y < 0 x<0,y<0 then let a = x , b = y a=-x,b=-y . Then ( x + 1 x ) ( x + 1 y ) + ( y + 1 y ) ( y + 1 x ) \large \left(x+ \frac 1x \right)\left(x+ \frac 1y\right)+\left(y+ \frac 1y \right)\left(y+ \frac 1x\right) = = ( a + 1 a ) ( a + 1 b ) + ( b + 1 b ) ( b + 1 a ) \large \left(a+ \frac 1a \right)\left(a+ \frac 1b\right)+\left(b+ \frac 1b \right)\left(b+ \frac 1a\right) , which is positive.

Observe that ( x + 1 x ) ( x + 1 y ) + ( y + 1 y ) ( y + 1 x ) 2 ( x + y + 1 x + 1 y ) 2 ( x + y + 4 x + y ) 8 \large \left(x+ \frac 1x \right)\left(x+ \frac 1y\right)+\left(y+ \frac 1y \right)\left(y+ \frac 1x\right) \ge 2(x+y+\frac { 1 }{ x } +\frac { 1 }{ y } )\ge 2(x+y+\frac { 4 }{ x+y } )\ge 8 .

Equality holds when x = y = ± 1 x=y=\pm 1 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...