Let x , y be real non-zero numbers such that x y > 0 . Find the minimum value of
( x + x 1 ) ( x + y 1 ) + ( y + y 1 ) ( y + x 1 )
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Note that x > 0 , y > 0 or x < 0 , y < 0 . If x < 0 , y < 0 then let a = − x , b = − y . Then ( x + x 1 ) ( x + y 1 ) + ( y + y 1 ) ( y + x 1 ) = ( a + a 1 ) ( a + b 1 ) + ( b + b 1 ) ( b + a 1 ) , which is positive.
Observe that ( x + x 1 ) ( x + y 1 ) + ( y + y 1 ) ( y + x 1 ) ≥ 2 ( x + y + x 1 + y 1 ) ≥ 2 ( x + y + x + y 4 ) ≥ 8 .
Equality holds when x = y = ± 1 .
Problem Loading...
Note Loading...
Set Loading...
Because to the condition x y > 0 , both x and y must be both positive and negative and either case will lead to the same minimum positive value of the expression. Hence we can consider x , y > 0 and use AM-GM inequality as follows.
( x + x 1 ) ( x + y 1 ) + ( y + y 1 ) ( y + x 1 ) = x 2 + y x + 1 + x y 1 + y 2 + x y + 1 + x y 1 = x 2 + y 2 + x y 2 + y x + x y + 2
x 2 + y 2 + x y 2 + y x + x y + 2 ≥ 2 x 2 y 2 + x y 2 + 2 y x ⋅ x y + 2 ≥ 2 x y + x y 2 + 2 + 2 ≥ 2 2 x y ⋅ x y 2 + 2 + 2 ≥ 4 + 2 + 2 = 8
Equality occurs when x = y = ± 1 .