A Geometry Problem . T^3 Tilted, Turned And Twisted Maths

Geometry Level 3

A B C ABC is a triangle in which A D AD is the bisector of angle A A such that A D B = 12 0 \angle ADB = 120 ^\circ . A B : A C = 3 : 1 AB : AC = 3 :1 and A D = 10 cm AD = 10 \text{ cm} . C E CE is the median on side A B AB of triangle A B C ABC . O O is the centroid of the triangle A B C ABC . Through O O a line O F E A OF \parallel EA is drawn. Find the area of triangle O F C OFC in cm 2 \text{cm}^2 .

Round your answer to 2 decimal places.


The answer is 25.66.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

F F
Jul 31, 2016

Draw AG perpendicular on line BC . ( Note : It will meet BC in the part DC and not in BD.)
Let AB = 3 x x , AC = x x ,

(by angle bisector theorem we know that bisector of any angle of a triangle divides the base side in the same ratio as the remaining sides .'. BD : CD= 3:1 Let BD = 3 y y and DC = y y

In right triangle AGD ,

=> A G A D \frac{AG}{AD} =sin 60

=> A G 10 c m \frac{AG}{10 cm} = 3 2 \frac{√3}{2}

=> AG = 10 3 c m 2 \frac{10√3 cm}{2}

=> AG = 5√3 cm

Also, D G A D \frac{DG}{AD} = cos 60

=> D G 10 c m \frac{DG}{10cm} = 1 2 \frac{1}{2}

=> DG = 5 cm

In right triangle AGB,

AB^2 - BG^2 = AG^2 (by Pythagoras theorem )

=> (3 x x )^2 - (BD + DG )^2 = (5√3)^2

=> 9 x x ^2 - (3 y y +5 )^2 = 75

=> 9 x x ^2 - 9 y y ^2 - 30 y y - 25 = 75

=> 9 x x ^2 - 9 y y ^2 - 30 y y =100 ------------------------------ eq n (1)

Similarly , in triangle AGC ,

AC^2 - GC^2 = AG^2 (by Pythagoras theorem )

=> x x ^2 - (DC - DG )^2 = (5√3)^2

=> x x ^2 - ( y y - 5 )^2 = 75

=> x x ^2 - y y ^2 + 10 y y - 25 = 75

=> x x ^2 - y y ^2 + 10 y y = 100

=> 9 x x ^2 - 9 y y ^2+ 90 y y = 900 ------------------------------------ eq n (2) (Multiplying both sides of eq n by 9)

Subtracting equation (1) from equation (2) , we get :

120 y y = 800

=> y y = 800 120 \frac{800}{120}

=> y y = 20 3 \frac{20}{3}

.'. BC = BD + DC
= 3 y y + y y
= 4 y y
= 4 * 20 3 \frac{20}{3}
= 4 * 20 3 \frac{20}{3}
= 80 3 \frac{80}{3}

.'. Area of △ ABC = 1 2 \frac{1}{2} * AG * BC
= 1 2 \frac{1}{2} * 5√3 cm * 80 3 \frac{80}{3}
= 200 3 c m 2 3 \frac{200√3 cm^2}{3}

'.' We know that median of a triangle divides a triangle into two triangles of equal area.

.'. Ar . △ ECA = 1 2 \frac{1}{2} Area of △ ABC = 200 3 c m 2 3 2 \frac{200√3 cm^2}{3*2}
= 100 3 c m 2 3 \frac{100√3 cm^2}{3}

Now , in △ ECA and △ OFC ,,

∠ C = ∠ C ( Common )

& ∠A = ∠ CFO ( '.' EA || OF .'. alt. int. ∠s are equal )

.'. △ ECA ~ △ OFC --(by AA similarity criterion)

.'. A r . E C A A r . O F C \frac{Ar. △ ECA}{ Ar . △ OFC} = C O 2 O F 2 \frac{CO^2}{OF^2} ( In similar triangles ratio of area of triangles = ratio of .. square of corresponding sides of the triangle ) => A r . E C A A r . O F C \frac{Ar. △ ECA }{ Ar . △ OFC} = C E C O \frac{CE}{CO} ^2 ------------ eq n (3)

We know that centroid divides median in ratio 2:1

.'. CO : OE = 2 : 1

=> OE: CO =1 : 2

=> O E C O \frac{OE}{CO} + 1 = 1 2 \frac{1}{2} +1
. => O E + C O C O \frac{OE+CO}{CO} = 3 2 \frac{3}{2}

=> C E C O \frac{CE}{CO} = 3 2 \frac{3}{2}

Putting CE/CO = 3/2 in equation 3 , we gets :

=> A r . E C A A r . O F C \frac{Ar. △ ECA }{ Ar . △ OFC} = 3 2 \frac{3}{2} ^2

=> A r . E C A A r . O F C \frac{Ar. △ ECA }{ Ar . △ OFC} = 9 4 \frac{9}{4}

=> ( 100 3 / 3 ) c m 2 A r . O F C \frac{(100√3 /3 )cm^2 }{ Ar . △ OFC} = 9 4 \frac{9}{4} ('.' Area of △ ECA = 100 3 c m 2 3 \frac{100√3 cm^2}{3}

=> Ar. △ OFC = 100 3 4 c m 2 3 9 \frac{100√3*4cm^2}{3*9}
= 25.660
* This question has been TILTED using GEOMETRY, TURNED from its original path using ALGEBRA and finally TWISTED . using TRIGONOMETRY . *

Ahmad Saad
Jul 30, 2016

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...