How do I reciprocate a polynomial?

Algebra Level 3

n = 1 2015 1 T n \large \displaystyle \sum_{n=1}^{2015} \dfrac{1}{T_{n}}

If T n = 1 4 ( n + 2 ) ( n + 3 ) T_{n} = \frac{1}{4} (n+2)(n+3) , the value of the above sum is in the form A B \dfrac{A}{B} , where A , B N A,B \in \mathbb{N} and gcd ( A , B ) = 1 \gcd(A,B)=1 . Find A + B A+B .


The answer is 7057.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rishabh Jain
Mar 17, 2016

n = 1 2015 1 T n = n = 1 2015 4 ( n + 2 ) ( n + 3 ) = 4 n = 1 2015 ( 1 n + 2 1 n + 3 ) \begin{aligned}\displaystyle \sum_{n=1}^{2015} \dfrac{1}{T_{n}}&=\displaystyle \sum_{n=1}^{2015} \dfrac{4}{(n+2)(n+3)}\\&=4\displaystyle \sum_{n=1}^{2015} \left(\dfrac{1}{n+2}-\dfrac{1}{n+3}\right)\end{aligned} ( A T e l e s c o p i c S e r i e s ) \color{#456461}{\mathbf{(A~Telescopic ~Series)}} = 4 ( 1 3 1 2018 ) \large =4\left(\dfrac{1}{3}-\dfrac{1}{2018}\right) = 4030 3027 \large =\dfrac{4030}{3027} 4030 + 3027 = 7057 \therefore 4030+3027=\Huge\color{#456461}{\boxed{\color{#EC7300}{\boxed{\color{#0C6AC7}{\mathbf{7057}}}}}}

Same soln.

Aditya Narayan Sharma - 5 years, 2 months ago

Another fine solution by "The Cool"! :)

tom engelsman - 4 years, 4 months ago

Log in to reply

Thanks... :-)

Rishabh Jain - 4 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...