Just two numbers

Geometry Level 3

If A B = 10 AB=10 and cot ( α ) + cot ( β ) = 3 \cot(\alpha)+\cot(\beta)=3 , what is the area of triangle A B C ABC ?


The answer is 16.667.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ossama Ismail
May 23, 2018

Elegant. Thank you.

Marta Reece - 3 years ago

Yes, it's a simple -n- sweet solution, Ossama….thanks!

tom engelsman - 1 year, 2 months ago

You are welcome !

Ossama Ismail - 1 year, 2 months ago
Marta Reece
May 22, 2018

A = a c 2 s i n ( β ) = c 2 s i n ( β ) s i n ( α ) c s i n ( γ ) = c 2 2 s i n ( α ) s i n ( β ) s i n ( γ ) = c 2 2 s i n ( α ) s i n ( β ) s i n ( 18 0 α β ) = c 2 2 s i n ( α ) s i n ( β ) s i n ( α + β ) = c 2 2 s i n ( α ) s i n ( β ) s i n ( α ) c o s ( β ) + c o s ( α ) s i n ( β ) = c 2 2 1 c o t ( α ) + c o t ) β ) A=\frac{ac}2\cdot sin(\beta)=\frac c2\cdot sin(\beta)\cdot sin(\alpha)\cdot\frac c{sin(\gamma)}=\frac{c^2}2\cdot\frac{sin(\alpha)\cdot sin(\beta)}{sin(\gamma)}=\frac{c^2}2\cdot\frac{sin(\alpha)\cdot sin(\beta)}{sin(180^\circ-\alpha-\beta)}=\frac{c^2}2\cdot\frac{sin(\alpha)\cdot sin(\beta)}{sin(\alpha+\beta)}=\frac{c^2}2\cdot\frac{sin(\alpha)\cdot sin(\beta)}{sin(\alpha)\cdot cos(\beta)+cos(\alpha)\cdot sin(\beta)}=\frac{c^2}2\cdot\frac1{cot(\alpha)+cot)\beta)}

A = 1 0 2 2 1 3 16.667 A=\frac{10^2}2\cdot\frac13\approx\boxed{16.667}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...