Just verify!

Algebra Level 3

1 i + 2 i 2 + 3 i 3 + 5 i 4 \large \frac{1}{i} + \frac{2}{i^{2}} + \frac{3}{i^{3}} + \frac{5}{i^{4}}

Express the above expression in the form of a + i b a+ib .

Clarification : i = 1 i=\sqrt{-1} .

2 i + 3 -2i+3 2 i + 3 2i+3 2 i 2i 2 i 3 2i-3

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Oct 10, 2016

z = 1 i + 2 i 2 + 3 i 3 + 5 i 4 Multiply throughout by 1 = i 4 = i 3 + 2 i 2 + 3 i + 5 = ( i 2 ) i + 2 ( i 2 ) + 3 i + 5 Note that i 2 = 1 = i 2 + 3 i + 5 = 2 i + 3 \begin{aligned} z & = \frac 1i + \frac 2{i^2} + \frac 3{i^3} + \frac 5{i^4} & \small \color{#3D99F6}{\text{Multiply throughout by }1=i^4} \\ & = i^3 + 2i^2 + 3i + 5 \\ & = \color{#3D99F6}{(i^2)}i + 2\color{#3D99F6}{(i^2)} + 3i + 5 & \small \color{#3D99F6}{\text{Note that }i^2=-1} \\ & = \color{#3D99F6}{-i-2} + 3i + 5 \\ & = \boxed{2i+3} \end{aligned}

i 2 = 1 , i 3 = i , i 4 = 1 i^{2}=-1,i^{3}=-i,i^{4}=1 where 1 = i \sqrt{-1}=i Then,

1 i + 2 i 2 + 3 i 3 + 5 i 4 = 1 i + 2 1 + 3 i + 5 1 \frac{1}{i}+\frac{2}{i^{2}}+\frac{3}{i^{3}}+\frac{5}{i^{4}}=\frac{1}{i}+\frac{2}{-1}+\frac{3}{-i}+\frac{5}{1}

= 1 i 3 i 2 + 5 =\frac{1}{i}-\frac{3}{i}-2+5

= 2 i + 3 = 2 i + 3 =\frac{-2}{i}+3=\boxed{2i+3}

Viki Zeta
Oct 10, 2016

a + i b = 1 i + 2 i 2 + 3 i 3 + 5 i 4 = 1 i × i i + 2 1 + 3 i + 5 1 = i 2 + 3 i + 5 = 3 + 2 i a + ib = \dfrac{1}{i} + \dfrac{2}{i^2} + \dfrac{3}{i^3} + \dfrac{5}{i^4} \\ = \dfrac{1}{i} \times \dfrac{i}{i} + \dfrac{2}{-1} + \dfrac{3}{-i} + \dfrac{5}{1} \\ = -i -2 + 3i + 5 \\ = 3 + 2i

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...