Just...another integral

Calculus Level 5

Calculate the integral:

0 1 ( x + 1 x ) sin π x 1 + 2 x d x \int_{0}^{1} \dfrac {({\sqrt{x}+\sqrt{1-x})}\sin{πx}} {1+\sqrt{2x}} dx


The answer is 0.4501.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

I = 0 1 ( x + 1 x ) sin π x 1 + 2 x d x By a b f ( x ) d x = a b f ( a + b x ) d x = 1 2 0 1 ( ( x + 1 x ) sin π x 1 + 2 x + ( 1 x + x ) sin ( π π x ) 1 + 2 ( 1 x ) ) d x = 1 2 0 1 ( x + 1 x ) ( 1 1 + 2 x + 1 1 + 2 ( 1 x ) ) sin π x d x = 1 2 0 1 ( x + 1 x ) ( 1 2 x 1 2 x + 1 2 ( 1 x ) 2 x 1 ) sin π x d x = 1 2 0 1 ( x + 1 x ) ( 2 ( 1 x ) 2 x 1 2 x ) sin π x d x = 1 2 0 1 ( 1 2 x 1 2 x ) 2 sin π x d x = 1 2 0 1 sin π x d x = cos π x 2 π 1 0 = 2 π 0.450 \begin{aligned} I & = \int_0^1 \frac {\left(\sqrt x + \sqrt{1-x}\right)\sin \pi x}{1+\sqrt{2x}}dx & \small \color{#3D99F6} \text{By }\int_a^b f(x) \ dx = \int_a^b f(a+b-x) \ dx \\ & = \frac 12 \int_0^1 \left(\frac {\left(\sqrt x + \sqrt{1-x}\right)\sin \pi x}{1+\sqrt{2x}} + \frac {\left(\sqrt{1-x} + \sqrt x\right)\sin (\pi-\pi x)}{1+\sqrt{2(1-x)}} \right) dx \\ & = \frac 12 \int_0^1 \left(\sqrt x + \sqrt{1-x}\right)\left(\frac 1{1+\sqrt{2x}} + \frac 1{1+\sqrt{2(1-x)}} \right)\sin \pi x\ dx \\ & = \frac 12 \int_0^1 \left(\sqrt x + \sqrt{1-x}\right)\left(\frac {1-\sqrt{2x}}{1-2x} + \frac {1-\sqrt{2(1-x)}}{2x-1} \right) \sin \pi x\ dx \\ & = \frac 12 \int_0^1 \left(\sqrt x + \sqrt{1-x}\right)\left(\frac {\sqrt{2(1-x)}-\sqrt{2x}}{1-2x} \right) \sin \pi x\ dx \\ & = \frac 12 \int_0^1 \left(\frac {1-2x}{1-2x} \right)\sqrt 2 \sin \pi x\ dx \\ & = \frac 1{\sqrt 2} \int_0^1 \sin \pi x\ dx \\ & = \frac {\cos \pi x}{\sqrt 2 \pi} \bigg|_1^0 = \frac {\sqrt 2}\pi \approx \boxed{0.450} \end{aligned}

I have always enjoyed your solution ;)

Rakshit Joshi - 2 years, 11 months ago

Log in to reply

Nice to know that.

Chew-Seong Cheong - 2 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...