Juxtaposing Logs

Algebra Level 2

If a a , b b and c c are positive numbers satisfying log a b c = log c b a , \large \log_a b^c = \log_c b^a , then which of the following equation must be true?

a a = b b a^a = b^b a a = c c a^a = c^c b b = c c b^b = c^c

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Viki Zeta
Oct 17, 2016

log a ( b c ) = log c ( b a ) c log a b = a log c b c a = log c b log a b = 1 log a b × 1 log b c = 1 1 log b a × 1 log b c = log b a log b c = log c a c a = log c a c = a log c a c = log c ( a a ) c c = a a \log_a(b^c) = \log_c(b^a) \\ c\log_ab = a\log_cb\\ \dfrac{c}{a} = \dfrac{\log_cb}{\log_ab} \\ = \dfrac{1}{\log_ab} \times \dfrac{1}{\log_bc} \\ = \dfrac{1}{\dfrac{1}{\log_ba}} \times \dfrac{1}{\log_bc} \\ = \dfrac{\log_ba}{\log_bc} \\ = \log_ca \\ \dfrac{c}{a} = \log_ca \\ c = a\log_ca \\ c = \log_c(a^a) \boxed{\therefore c^c = a^a}

Tapas Mazumdar
Oct 18, 2016

log a b c = log c b a c log a b = a log c b c log b log a = a log b log c c log a = a log c c log c = a log a log c c = log a a c c = a a \log_a b^c = \log_c b^a \\ \implies c \log_a b = a \log_c b \\ \implies c \cdot \dfrac{\cancel{\log b}}{\log a} = a \cdot \dfrac{\cancel{\log b}}{\log c} \\ \implies \dfrac{c}{\log a} = \dfrac{a}{\log c} \\ \implies c \log c = a \log a \\ \implies \log c^c = \log a^a \\ \implies \boxed{c^c = a^a}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...