Kano Logarithms

Algebra Level 2

log 1 2 16 log 9 27 = ? \large \log_{\frac{1}{2}}16 - \log_{9}27 = \ ?


The answer is -5.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

log 1 2 16 log 9 27 = log 16 log 1 2 log 27 log 9 = log 2 4 log 2 log 3 3 log 3 2 = 4 log 2 log 2 3 log 3 2 log 3 = 4 3 2 = 5.5 \begin{aligned} \log_\frac 12 16 - \log_9 27 & = \frac {\log 16}{\log \frac 12} - \frac {\log 27}{\log 9} \\ & = \frac {\log 2^4}{-\log 2} - \frac {\log 3^3}{\log 3^2} \\ & = - \frac {4\log 2}{\log 2} - \frac {3\log 3}{2\log 3} \\ & = - 4 - \frac 32 = \boxed {-5.5} \end{aligned}

Anurag Biswas
Dec 2, 2019

log 1 / 2 16 l o g 9 27 \log_{1/2} 16 - log _9 27

= log 1 / 2 1 / 2 4 l o g 9 9 1.5 = \log_{1/2} {1/2}^{-4} - log_9 9^{1.5}

= 4 log 1 / 2 1 / 2 1.5 log 9 9 =-4\log_{1/2} {1/2} - 1.5\log_9 9

= 4 1.5 = -4 - 1.5

= 5.5 =-5.5

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...