Keep calm and sum up!

Algebra Level 4

Find the sum of the combination of first 17 natural numbers taken two at a time.


The answer is 10812.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Harsh Khatri
Mar 15, 2016

We pair up every number i i with the 17 i 17-i numbers greater than it and add all such products.

Let T ( n ) = k = 1 n k = n ( n + 1 ) 2 T(n) = \displaystyle \sum_{k=1}^{n} k = \frac{n(n+1)}{2}

S = 1.2 + 1.3 + + 1.17 S = 1.2 + 1.3 + \ldots + 1.17

+ 2.3 + 2.4 + + 2.17 \qquad + 2.3 + 2.4 + \ldots + 2.17

+ \qquad + \ldots

+ 16.17 \qquad + 16.17

+ 17.0 \qquad + 17.0

S = 1 ( 1 + 2 + + 17 1 ) S = 1(1+2+\ldots+17 - 1)

+ 2 ( 1 + 2 + + 17 1 2 ) \qquad + 2(1+2+\ldots+17 - 1-2)

+ \qquad + \ldots

+ 16 ( 1 + 2 + + 17 1 2 16 ) \qquad + 16( 1+2+\ldots+17 - 1-2-\ldots - 16)

+ 17 ( 1 + 2 + + 17 1 2 16 17 ) \qquad + 17(1+2+\ldots+17 - 1 - 2-\ldots - 16 - 17)

S = r = 1 17 r ( T ( 17 ) T ( r ) ) S = \displaystyle \sum_{r=1}^{17} r( T(17) - T(r))

S = T ( 17 ) × T ( 17 ) 1 2 ( r = 1 17 r 3 + r 2 ) S = T(17)\times T(17) - \frac{1}{2} \bigg( \displaystyle \sum_{r=1}^{17} r^3 + r^2 \bigg)

S = ( T ( 17 ) ) 2 ( T ( 17 ) ) 2 2 ( 17 ) ( 18 ) ( 35 ) 6 S = (T(17))^2 - \frac{(T(17))^2}{2} - \frac{(17)(18)(35)}{6}

S = 10812 S= \boxed{10812}

OR

We can team up every number with other 16 numbers. In this way every product is added twice. So we divide it by 2.

S = 1 2 × ( r = 1 17 r ( T ( 17 ) r ) ) S = \frac{1}{2} \times \bigg( \displaystyle \sum_{r=1}^{17} r(T(17)-r) \bigg)

S = 1 2 × ( ( T ( 17 ) ) 2 ( 17 ) ( 18 ) ( 35 ) 6 ) S = \frac{1}{2} \times \bigg( (T(17))^2 - \frac{(17)(18)(35)}{6} \bigg)

S = 21624 2 = 10812 S = \frac{21624}{2} = \boxed{10812}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...