Keep Logging! llI

Algebra Level 3

8 1 1 log 5 3 + 2 7 log 9 36 + 3 4 log 7 9 = ? \Large 81^{\frac1{\log_5 3}} + 27^{\log_9 36} + 3^{\frac 4{\log_7 9}} = \, ?


The answer is 890.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Mar 26, 2017

x = 8 1 1 log 5 3 + 2 7 log 9 36 + 3 4 log 7 9 = 3 4 log 3 5 log 3 3 + 3 3 log 3 36 log 3 9 + 3 4 log 3 7 log 3 9 = 3 4 log 3 5 + 3 6 log 3 6 2 + 3 4 log 3 7 2 = 3 4 log 3 5 + 3 3 log 3 6 + 3 2 log 3 7 = 3 log 3 5 4 + 3 log 3 6 3 + 3 log 3 7 2 = 5 4 + 6 3 + 7 2 = 625 + 216 + 49 = 890 \large \begin{aligned} x & = 81^\frac 1{\log_5 3} + 27^{\log_9 36} + 3^\frac 4{\log_7 9} \\ & = 3^\frac {4\log_3 5}{\log_3 3} + 3^\frac {3\log_3 36}{\log_3 9} + 3^\frac {4 \log_3 7}{\log_3 9} \\ & = 3^{4\log_3 5} + 3^\frac {6\log_3 6}2 + 3^\frac {4 \log_3 7}2 \\ & = 3^{4\log_3 5} + 3^{3\log_3 6} + 3^{2 \log_3 7} \\ & = 3^{\log_3 5^4} + 3^{\log_3 6^3} + 3^{\log_3 7^2} \\ & = 5^4 + 6^3 + 7^2 \\ & = 625 + 216 + 49 \\ & = \boxed{890} \end{aligned}

Tapas Mazumdar
Mar 26, 2017

8 1 1 log 5 3 + 2 7 log 9 36 + 3 4 log 7 9 = 8 1 log 3 5 + 2 7 log 9 36 + 3 4 log 9 7 = 3 4 log 3 5 + 3 3 log 3 2 36 + 3 4 log 3 2 7 = 3 log 3 5 4 + 3 log 3 36 3 / 2 + 3 log 3 7 2 = 5 4 + 3 6 3 / 2 + 7 2 = 625 + 216 + 49 = 890 \Large \begin{aligned} 81^{\frac 1{\log_5 3}} + 27^{\log_9 36} + 3^{\frac 4{\log_7 9}} &= 81^{\log_3 5} + 27^{\log_9 36} + 3^{4{\log_9 7}} \\ &= 3^{4{\log_3 5}} + 3^{3\log_{3^2} 36} + 3^{4{\log_{3^2} 7}} \\ &= 3^{\log_3 5^4} + 3^{\log_3 {36}^{{3}/{2}}} + 3^{\log_3 7^2} \\ &= 5^4 + 36^{{3}/{2}} + 7^2 \\ &= 625 + 216 + 49 \\ &= \boxed{890} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...