Keep your distance

Geometry Level 5

Let Δ A B C \Delta ABC have integer side lengths and be right-angled at B B . Now suppose Δ D E F \Delta DEF is located within Δ A B C \Delta ABC with the same orientation, such that its sides are parallel to the corresponding sides of Δ A B C \Delta ABC and the distance between the corresponding parallel sides is 3 3 .

If the area of Δ A B C \Delta ABC is 4 4 times that of Δ D E F \Delta DEF then there are n n possible triangles Δ A B C \Delta ABC independent of orientation. If S S is the sum of the lengths of the hypotenuses of these n n triangles, then find n + S . n + S.


The answer is 273.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let D E A B , E F B C DE || AB, EF || BC and D F A C DF || AC . Also let sides A B , B C , A C AB, BC, AC have respective lengths a , b , c a,b,c . Since the area of Δ A B C \Delta ABC is 4 4 times that of Δ D E F \Delta DEF we then have that D E = a 2 , E F = b 2 DE = \frac{a}{2}, EF = \frac{b}{2} and D F = c 2 . DF = \frac{c}{2}.

Now break Δ A B C \Delta ABC into trapezoids A D E B , B E F C ADEB, BEFC and A D F C ADFC , as well as Δ D E F \Delta DEF . Adding up the areas of these latter four regions and equating the sum to the area of the larger triangle, we have that

3 ( 3 4 a ) + 3 ( 3 4 b ) + 3 ( 3 4 c ) + a b 8 = a b 2 3(\frac{3}{4}a) + 3(\frac{3}{4}b) + 3(\frac{3}{4}c) + \frac{ab}{8} = \frac{ab}{2}

6 a + 6 b + 6 c = a b a b 6 a 6 b = 6 c = 6 a 2 + b 2 \Longrightarrow 6a + 6b + 6c = ab \Longrightarrow ab - 6a - 6b = 6c = 6\sqrt{a^{2} + b^{2}}

a 2 b 2 + 36 a 2 + 36 b 2 12 a b 2 12 a 2 b + 72 a b = 36 a 2 + 36 b 2 \Longrightarrow a^{2}b^{2} + 36a^{2} + 36b^{2} - 12ab^{2} - 12a^{2}b + 72ab = 36a^{2} + 36b^{2}

a b ( a b 12 a 12 b + 72 ) = 0 b ( a 12 ) = 12 a 72 \Longrightarrow ab(ab - 12a - 12b + 72) = 0 \Longrightarrow b(a - 12) = 12a - 72

b = 12 + 72 a 12 \Longrightarrow b = 12 + \dfrac{72}{a - 12} .

Since b b must be an integer, we must have a 12 a - 12 as a (positive) factor of 72 72 . The possible values of a a are then 13 , 14 , 15 , 16 , 18 , 20 , 21 , 24 , 30 , 36 , 48 , 84 13,14,15,16,18,20,21,24,30,36,48,84 .

Upon calculating corresponding values for b b and c c , we find that there are 6 6 possible triangles independent of orientation, namely

( 13 , 84 , 85 ) , ( 14 , 48 , 50 ) , ( 15 , 36 , 39 ) , ( 16 , 30 , 34 ) , ( 18 , 24 , 30 ) , ( 20 , 21 , 29 ) (13,84,85), (14,48,50), (15,36,39), (16,30,34), (18,24,30), (20,21,29) .

The desired sum is then 6 + 85 + 50 + 39 + 34 + 30 + 29 = 273 6 + 85 + 50 + 39 + 34 + 30 + 29 = \boxed{273} .

Amazing problem. Thanks Sir!

Satvik Golechha - 6 years, 4 months ago

Impressive. I totally failed at attacking this problem.

Ken Hodson - 5 years, 4 months ago


( 12 , 37 , 35 ) : a = 6 ( 1 + 37 + 12 35 ) = 72 5 . a / x N o t a n i n t e g e r . N o s o l u t i o n . ( 9 , 41 , 40 ) : a = 6 ( 1 + 41 + 9 40 ) = 27 2 . a / x N o t a n i n t e g e r . N o s o l u t i o n . ( 28 , 53 , 45 ) : a = 6 ( 1 + 53 + 28 45 ) = 54 5 . a / x N o t a n i n t e g e r . N o s o l u t i o n . ( 11 , 61 , 60 ) : a = 6 ( 1 + 61 + 11 60 ) = 66 5 . a / x N o t a n i n t e g e r . N o s o l u t i o n . ( 16 , 65 , 63 ) : a = 6 ( 1 + 65 + 16 63 = 54 7 . a / x N o t a n i n t e g e r . N o s o l u t i o n . ( 33 , 65 , 56 ) : a = 6 ( 1 + 65 + 33 56 ) = 21 2 . a / x N o t a n i n t e g e r . N o s o l u t i o n . ( 48 , 73 , 55 ) : a = 6 ( 1 + 73 + 48 55 ) = 108 5 . a / x N o t a n i n t e g e r . N o s o l u t i o n . ( 36 , 85 , 77 ) : a = 6 ( 1 + 85 + 36 77 ) = 108 7 . a / x N o t a n i n t e g e r . N o s o l u t i o n . ( 39 , 89 , 80 ) : a = 6 ( 1 + 89 + 39 80 ) = 78 5 a / x N o t a n i n t e g e r . N o s o l u t i o n . ( 65 , 97 , 72 ) : a = 6 ( 1 + 97 + 65 72 ) = 39 2 a / x N o t a n i n t e g e r . N o s o l u t i o n . W e c a n s e e t h a t n o t o n l y a / x i s n o t a n i n t e g e r b u t i t i s a l s o l e s s t h a n 1. s o d i d n o t c h e c k f u r t h e r . A n y b e t t e r e x p l a n a t i o n w i l l b e a p p r e c i a t e d . \color{#EC7300}{ (12,37,35):- a=6*(1+\dfrac{37+12}{35})=\dfrac{72} 5.~~a/x~Not~an~integer.~~No~solution. \\ (9,41,40):- a=6*(1+\dfrac{41+9}{40})=\dfrac{27} 2.~~a/x~Not~an~integer.~~No~solution. \\ (28,53,45):- a=6*(1+\dfrac{53+28}{45})=\dfrac{54} 5.~~a/x~Not~an~integer.~~No~solution. \\ (11,61,60):- a=6*(1+\dfrac{61+11}{60})=\dfrac{66} 5.~~a/x~Not~an~integer.~~No~solution. \\ (16,65,63):- a=6*(1+\dfrac{65+16}{63}=\dfrac{54} 7.~~a/x~Not~an~integer.~~No~solution. \\ (33,65,56):- a=6*(1+\dfrac{65+33}{56})=\dfrac{21} 2.~~a/x~Not~an~integer.~~No~solution. \\ (48,73,55):- a=6*(1+\dfrac{73+48}{55})=\dfrac{108} 5.~~a/x~Not~an~integer.~~No~solution. \\ (36,85,77):- a=6*(1+\dfrac{85+36}{77})=\dfrac{108} 7.~~a/x~Not~an~integer.~~No~solution. \\ (39,89,80):- a=6*(1+\dfrac{89+39}{80})=\dfrac{78} 5~~a/x~Not~an~integer.~~No~solution. \\ (65,97,72):- a=6*(1+\dfrac{97+65}{72})=\dfrac{39}2~~a/x~Not~an~integer.~~No~solution. \\ We~can~see ~that~not~only~a/x~is~not ~an~integer~but~ it~is~also~less~than~1.~so~did~not~check~further.\\ Any~better~explanation~will~be~appreciated. } B e t t e r S o l u t i o n Better~Solution A N Y P Y T H A G O R E A N R I G H T T R I A N G L E W I T H I N R A D I U S = 6 I S T H E S O L U T I O N ANY~PYTHAGOREAN ~RIGHT~TRIANGLE~ WITH ~INRADIUS~ =~ 6 ~IS~ THE~~ SOLUTION


6 i m u s t b e a n i n t e g e r . i m u s t b e a f a c t o r o f 6 ( 12 , 37 , 35 ) : i = 5. 6 i N o t a f a c t o r o f 6. N o s o l u t i o n . ( 9 , 41 , 40 ) : i = 4. 6 i N o t a f a c t o r o f 6. N o s o l u t i o n . ( 28 , 53 , 45 ) : i = 10. 6 i N o t a f a c t o r o f 6. N o s o l u t i o n ( 11 , 61 , 60 ) : i = 5. 6 i N o t a f a c t o r o f 6. N o s o l u t i o n ( 16 , 65 , 63 ) : i = 3.5. 6 i N o t a f a c t o r o f 6. N o s o l u t i o n ( 33 , 65 , 56 ) : i = 12. 6 i N o t a f a c t o r o f 6. N o s o l u t i o n ( 48 , 73 , 55 ) : i = 15. 6 i N o t a f a c t o r o f 6. N o s o l u t i o n ( 36 , 85 , 77 ) : i = 14. 6 i N o t a f a c t o r o f 6. N o s o l u t i o n ( 39 , 89 , 80 ) : i = 15. 6 i N o t a f a c t o r o f 6. N o s o l u t i o n ( 65 , 97 , 72 ) : i = 20. 6 i N o t a f a c t o r o f 6. N o s o l u t i o n I n c i d e n t a l l y i n a r t i c l e s o n r i g h t t r i a n g l e s o n e c a n s e e t h a t t h e r e a r e o n l y S I X t r i a n g l e s w i t h i n r a d i u s r = 6. \color{#3D99F6}{ \dfrac 6 i~must~be~an~integer.~~\therefore~i~must~be~a~factor~of~6\\ (12,37,35):- i=5.~~~\dfrac 6 i~Not~a~factor~of~6.~No~solution. \\ (9,41,40):- i=4.~~~ \dfrac 6 i~Not~a~factor~of~6.~No~solution. \\ (28,53,45):- i=10. ~~~\dfrac 6 i~Not~a~factor~of~6.~No~solution \\ (11,61,60):- i=5.~~~ \dfrac 6 i~Not~a~factor~of~6.~No~solution \\ (16,65,63):- i=3.5. ~~~\dfrac 6 i~Not~a~factor~of~6.~No~solution \\ (33,65,56):- i=12. ~~~\dfrac 6 i~Not~a~factor~of~6.~No~solution \\ (48,73,55):- i=15. ~~~\dfrac 6 i~Not~a~factor~of~6.~No~solution \\ (36,85,77):- i=14. ~~~\dfrac 6 i~Not~a~factor~of~6.~No~solution \\ (39,89,80):- i=15.~~~ \dfrac 6 i~Not~a~factor~of~6.~No~solution \\ (65,97,72):- i=20. ~~~\dfrac 6 i~Not~a~factor~of~6.~No~solution \\ Incidentally~in ~articles~on ~right~triangles~one~can~see~that~there~are~only~SIX~triangles~with~inradius~r=6. } \\

W e s a w t h a t t h e r e q u i r e d t r i a n g l e s h o u l d b e P y t h a g o r e a n r i g h t t r i a n g l e w i t h i n r a d i u s = 6. F r o m t h e w e b w e k n o w t h a t t h e r e a r e s i x s u c h t r i a n g l e s a n d t h e i r s i d e s a r e a l s o g i v e n . W e a d d t h e l e n g t h s o f t h e i r h y p o t e n u s e s . \color{#D61F06}{ \\ We~ saw~ that~ the~ required ~triangle~ should~ be~ Pythagorean~ right~ triangle ~with~ inradius~ =~ 6.~~ From ~the ~web~ we~ know ~that~ there~ are~ six~ such~ triangles ~and~their~sides~are~also~given.~~ We~ add~ the~ lengths~ of~ their~ hypotenuses.}

Niranjan Khanderia - 3 years ago
Mark Hennings
Nov 16, 2016

If we set up a coordinate system so that the right angle of the triangle is at the origin and two vertices are at ( a , 0 ) (a,0) and ( 0 , b ) (0,b) , then the equation of the hypotenuse of the smaller triangle is b x + a y = a b 3 a 2 + b 2 = a b 3 c bx + ay \; = \; ab - 3\sqrt{a^2+b^2} \; = \; ab - 3c and so the coordinates of the vertices of the smaller triangle are ( 3 , 3 ) (3,3) , ( 3 , a b 3 b 3 c a ) \big(3,\tfrac{ab - 3b - 3c}{a}\big) and ( a b 3 a 3 c b , 3 ) \big(\tfrac{ab-3a-3c}{b},3\big) , so the non-hypotenuse sides of the smaller triangle are p = 1 b ( a b 3 a 3 b 3 c ) q = 1 a ( a b 3 a 3 b 3 c ) p \; = \; \tfrac{1}{b}(ab - 3a-3b-3c) \hspace{2cm} q \; = \; \tfrac{1}{a}(ab - 3a - 3b - 3c) The area condition that 1 2 a b = 4 × 1 2 p q \tfrac12ab \,=\, 4\times\tfrac12pq now becomes a 2 b 2 = 4 ( a b 3 a 3 b 3 c ) 2 a^2b^2 \,=\, 4(ab - 3a -3b -3c)^2 , and hence 3 ( a b 2 a 2 b 2 c ) ( a b 6 a 6 b 6 c ) = 0 3(ab - 2a - 2b - 2c)(ab - 6a - 6b - 6c) \; = \; 0 We cannot have a b = 2 a + 2 b + 2 c ab = 2a + 2b + 2c , since that would force p , q p,q to be negative. Thus we deduce that a b = 6 a + 6 b + 6 c ab \; = \; 6a + 6b + 6c which tells us that p = 1 2 a p = \tfrac12a and q = 1 2 b q = \tfrac12b . Since ( a , b , c ) (a,b,c) is a Pythagorean triad, and we don't care about its orientation, we can find positive integers d , u , v d,u,v such that a = d ( u 2 v 2 ) , b = 2 d u v , c = d ( u 2 + v 2 ) a = d(u^2-v^2)\,,\,b = 2duv\,,\, c = d(u^2+v^2) . The above condition now becomes d v ( u v ) = 6 dv(u-v) \; = \; 6 There are 9 9 different solutions for d , u , v d,u,v , and these produce exactly 6 6 different Pythagorean triads ( a , b , c ) (a,b,c) , namely ( 13 , 84 , 85 ) (13,84,85) , ( 14 , 48 , 50 ) (14,48,50) , ( 15 , 36 , 39 ) (15,36,39) , ( 16 , 30 , 34 ) (16,30,34) , ( 18 , 24 , 30 ) (18,24,30) , ( 20 , 21 , 29 ) (20,21,29) . This makes the answer to the question 273 \boxed{273} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...