Khang's inequality

Algebra Level 5

Suppose a , b , c a, b, c are non-negative real numbers with a + b + c = 3 a+b+c=3 .

Find the maximum value of:

P = 1 a + 1 + 1 b + 1 + 1 c + 1 1 a b + b c + c a 5 \large P=\dfrac{1}{a+1}+\dfrac{1}{b+1}+\dfrac{1}{c+1}-\dfrac{1}{\sqrt[5]{ab+bc+ca}}


The answer is 1.000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

We have:

P = 1 a + 1 + 1 b + 1 + 1 c + 1 1 a b + b c + c a 5 P=\dfrac{1}{a+1}+\dfrac{1}{b+1}+\dfrac{1}{c+1}-\dfrac{1}{\sqrt[5]{ab+bc+ca}}

= ( a + 1 ) ( b + 1 ) + ( b + 1 ) ( c + 1 ) + ( c + 1 ) ( a + 1 ) ( a + 1 ) ( b + 1 ) ( c + 1 ) 1 a b + b c + c a 5 \quad=\dfrac{(a+1)(b+1)+(b+1)(c+1)+(c+1)(a+1)}{(a+1)(b+1)(c+1)}- \dfrac{1}{\sqrt[5]{ab+bc+ca}}

= a b + b c + c a + 2 ( a + b + c ) + 3 a b c + a b + b c + c a + a + b + c + 1 1 a b + b c + c a 5 \quad=\dfrac{ab+bc+ca+2(a+b+c)+3}{abc+ab+bc+ca+a+b+c+1}-\dfrac{1}{\sqrt[5]{ab+bc+ca}}

a b + b c + c a + 9 a b + b c + c a + 4 1 a b + b c + c a 5 \quad\le\dfrac{ab+bc+ca+9}{ab+bc+ca+4}-\dfrac{1}{\sqrt[5]{ab+bc+ca}}

= 1 + 5 a b + b c + c a + 4 1 a b + b c + c a 5 \quad=1+\dfrac{5}{ab+bc+ca+4}-\dfrac{1}{\sqrt[5]{ab+bc+ca}}

1 + 5 5 a b + b c + c a 5 1 a b + b c + c a 5 = 1 \quad\le1+\dfrac{5}{5\sqrt[5]{ab+bc+ca}}-\dfrac{1}{\sqrt[5]{ab+bc+ca}}=1 (using AM-GM inequality)

The equality holds if and only if ( a , b , c ) = ( 0 , 3 + 5 2 , 3 5 2 ) (a, b, c)=(0, \dfrac{3+\sqrt5}{2}, \dfrac{3-\sqrt5}{2}) or any permutation.

So, the maximum value of P P is 1 \boxed{1} .

Oh wow, that's pretty amazing. How did you come up with it?

Calvin Lin Staff - 5 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...