Treacherous Cylinder

A cylindrical capacitor of length l l has 2 2 plates, an inner plate of radius a a and outer plate of radius b b . The portion of volume between the two plates of the capacitor is filled with a material of dielectric constant k k and resistivity ρ \rho . Initially, the inner plate has a charge Q 0 Q_0 . Assuming that the capacitance of the system is C C , the charge fl​own from the inner plate of the capacitor at time t = ρ k ϵ 0 t=\rho k \epsilon_0 is S Q 0 S Q_0 . Find S S . Bonus: Find the charge on the inner plate of the capacitor as a function of time.


The answer is 0.63212.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Taufiq Murtadho
Aug 21, 2016

Suppose that the charge contained on the surface of inner cylinder is Q ( t ) Q(t)

Gauss Law in a dielectric system gives:

D . d A = Q e n c \large \oint_{}^{}D.dA=Q_{enc}

D = Q 2 π r l \large D=\frac{Q}{2\pi rl}

E = D ε = D k ε 0 \large E=\frac{D}{\varepsilon}=\frac{D}{k\varepsilon_{0}}

E = Q 2 π ε 0 k r l \large E=\frac{Q}{2\pi \varepsilon_{0} krl}

Ohm's Law

J = E ρ = Q 2 π ε 0 ρ k r l \large J=\frac{E}{\rho}= \frac{Q}{2\pi \varepsilon_{0} \rho krl}

I = J . d A = Q 2 π ε 0 ρ k r l 2 π r l = Q ρ ε 0 k \large I=\int J. dA= \frac{Q}{2\pi \varepsilon_{0} \rho krl}2\pi rl=\frac{Q}{\rho\varepsilon_{0}k}

d Q d t = Q ρ ε 0 k \large \frac{-dQ}{dt}=\frac{Q}{\rho\varepsilon_{0}k}

Rearranging and integrating gives you:

Q = Q 0 e t ρ ε 0 k \large Q= Q_{0}e^{\frac{-t}{\rho\varepsilon_{0}k}}

When t = ρ ε 0 k \large t=\rho\varepsilon_{0}k , Q = Q 0 e Q=\frac{Q_{0}}{e}

Finally, the charge flown is:

Q f l o w n = Q 0 ( 1 1 e ) = 0.63212 Q 0 \large Q_{flown}=Q_{0}(1-\frac{1}{e})=0.63212Q_{0}

S = 0.63212 \large S=0.63212

Its a nice way of finding it without using capacitance and resistance directly in their results, very fundamental and clear. Well done

Swagat Panda - 4 years, 9 months ago

I always admire solutions that use electromagnetics equations.

Mikhael Glen Lataza - 4 years, 5 months ago

Nice one!! (+1) from me!!!

Md Zuhair - 2 years, 12 months ago
Swagat Panda
Aug 14, 2016

Relevant wiki: RC Circuits (Direct Current)

Charge flown from a capacitor having resistance R e q and capacitance C e q as a function of time is given by: \text{Charge flown from a capacitor having resistance } R_{eq} \text{ and capacitance } C_{eq} \text{ as a function of time is given by:} q = Q 0 ( 1 e t R e q C e q ) ( 1 ) \boxed{q=Q_0\left(1-e^{{\dfrac{-t}{R_{eq} C_{eq}}}} \right)} \quad \cdots(1)

; where \text{ ; where } R e q C e q = τ \large R_{eq}C_{eq}= \tau is the time constant. \text{ is the time constant.}

To find R e q let us assume a small element d x , which is x distance away from the inner plate of radius a \text{To find } R_{eq} \text{ let us assume a small element } dx \text{, which is } x \text{ distance away from the inner plate of radius } a .

The resistance of this elementary portion is \text{The resistance of this elementary portion is} d R = ρ . d x 2 π x l \boxed{ dR =\dfrac{\rho.dx}{2\pi xl}}

As these resistances are in series we can directly integrate d R to find the net resistance of the capacitor. \text{As these resistances are in series we can directly integrate } dR \text{ to find the net resistance of the capacitor.} R e q = a b ρ . d x 2 π x l = ρ ( ln x ) a b 2 π l R e q = ρ ln b a 2 π l R_{eq}=\int _{ a }^{ b }{ \dfrac{\rho.dx}{2\pi xl} } = \dfrac{\rho\left.(\ln{x}) \right|^{b}_{a}}{2\pi l} \\ \Rightarrow \boxed{R_{eq}=\dfrac{\rho \ln{\dfrac {b}{a}}}{2\pi l}} Now, equivalent capacitance of a cylindrical capacitor is given by \text{Now, equivalent capacitance of a cylindrical capacitor is given by} C e q = 2 π k ϵ 0 l ln b a \boxed{C_{eq} = {\dfrac{2\pi k\epsilon_0 l}{\ln{\dfrac{b}{a}}}}}

Hence, \text{Hence, } τ = 2 π l k ϵ 0 ln b a × ρ ln b a 2 π l = k ρ ϵ 0 \tau = \dfrac{ {2\pi l} k\epsilon_0 }{\ln{\dfrac{b}{a}}}\times\dfrac{\rho \ln{\dfrac {b}{a}}}{{2\pi l}}=\boxed{k\rho \epsilon_0} Putting this value of τ and t (given in the question) in equation ( 1 ) , we get: \text{Putting this value of } \tau \text{ and } t \text{ (given in the question) in equation } (1)\text{, we get:} q = Q 0 ( 1 e ρ k ϵ 0 ρ k ϵ 0 ) = Q 0 ( 1 e 1 ) = Q 0 ( 1 0.36787 ) = Q 0 ( 0.63212 ) S = 0.63212 q= Q_0\left(1-{e^{{\dfrac{-\rho k \epsilon_0}{\rho k \epsilon_0}}}} \right) = Q_0\left( 1-e^{-1} \right) = Q_0\left(1-0.36787 \right) =\boxed{Q_0\left(0.63212\right)} \\ \Rightarrow \boxed{S=0.63212}

For capacitance of a cylindrical capacitor: \text{For capacitance of a cylindrical capacitor:}

  • Take an arbitrary radius r in between the plates of the capacitor \text{Take an arbitrary radius } r \text{ in between the plates of the capacitor}
  • Using Gauss’s law find the electric field at that radius r assuming that the field is radially outward. \text{Using Gauss's law find the electric field at that radius } r \text{ assuming that the field is radially outward.}
  • Then using the relation E = d V d r find the potential difference between a and b , using integration. \text{Then using the relation } E= -\dfrac{dV}{dr} \text{ find the potential difference between }a\text{ and }b \text{, using integration.}
  • Put this result in the formula C = Q V to get the value of capacitance. \text{Put this result in the formula } C=\dfrac{Q}{V} \text{ to get the value of capacitance.}

NOTE

Resistances are in series because potential is varying with radius and is not constant across each elementary resistance \rightarrow \text{Resistances are in series because potential is varying with radius and is not constant across each elementary resistance } and in series combinations, potential isn’t conserved. \text{and in series combinations, potential isn't conserved.}

d R = ρ . d x 2 π x l \rightarrow dR = {{\dfrac{\rho.dx}{2\pi xl}}} is obtained from the formula R = ρ l A . \text{ is obtained from the formula } R={\dfrac{\rho\ l}{A}}. 2 π x l = A and d x = l because the electric field in the capacitor is radially outward. 2 \pi xl=A \text{ and } dx=l \text{ because the electric field in the capacitor is radially outward. }

The Capacitance need not be found out. Using J=(sigma)E we can do the problem.

Abhi Kumbale - 4 years, 6 months ago

Log in to reply

Actually, the capacitance of cylindrical capacitor is to be remembered as a result. It is important in many objective problems based on these topics. I found the capacitance so that those who don't know this part can also understand how it is done.

Swagat Panda - 4 years, 6 months ago

Log in to reply

@Swagat Panda Can you look at this?

https://brilliant.org/discussions/thread/fluids-and-oscillations/?ref_id=1289264

Abhi Kumbale - 4 years, 6 months ago

I have a doubt .... The (1) equation is true when both the plates are charged ... I cannot understand this thing... could anybody clear my doubt . @Swagat Panda @Taufiq Murtadho

Ayush Choubey - 4 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...