Kinetic energy in cylindrical coordinates

It is well known that the kinetic energy of a particle in cartesian coordinates is given by:

E k i n = m 2 v 2 \boxed{E_{kin}=\frac{m}{2}|\overrightarrow{v}|^2} where v 2 = x ˙ 2 + y ˙ 2 + z ˙ 2 |\overrightarrow{v}|^2 = \dot{x}^2+\dot{y}^2+\dot{z}^2 .

Remember that for cylindrical coordinates we have:

x = [ x ( t ) y ( t ) z ( t ) ] [ r ( t ) cos ( ϕ ( t ) ) r ( t ) sin ( ϕ ( t ) ) z ( t ) ] \overrightarrow{x} = \begin{bmatrix} x(t) \\[0.3em] y(t) \\[0.3em] z(t) \end{bmatrix} \mapsto \begin{bmatrix} r(t) \text{cos}(\phi(t)) \\[0.3em] r(t) \text{sin}(\phi(t))\\[0.3em] z(t) \end{bmatrix}

From this information, find the expression for E k i n E_{kin} in cylindrical coordinates.

Possible answers:

A: E k i n = m 2 ( r ˙ 2 + r 2 ϕ 2 + z ˙ 2 ) E_{kin}=\frac{m}{2}(\dot{r}^2+r^2\phi^2+\dot{z}^2)

B: E k i n = m 2 ( r ˙ 2 + r 2 ϕ ˙ 2 + z ˙ 2 ) E_{kin}=\frac{m}{2}(\dot{r}^2+r^2\dot{\phi}^2+\dot{z}^2)

C: E k i n = m 2 ( r 2 + r ˙ 2 ϕ ˙ 2 + z ˙ 2 ) E_{kin}=\frac{m}{2}(r^2+\dot{r}^2\dot{\phi}^2+\dot{z}^2)

D: E k i n = m 2 ( r ˙ 2 + r ˙ 2 ϕ ˙ 2 + z ˙ 2 ) E_{kin}=\frac{m}{2}(\dot{r}^2+\dot{r}^2\dot{\phi}^2+\dot{z}^2)

B C A D

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tom Engelsman
Apr 24, 2020

Taking the time derivatives of the cylindrical coordinate vector above yields:

x ˙ ( t ) = r ˙ cos ( ϕ ) r ϕ ˙ sin ( ϕ ) \dot{x}(t) = \dot{r} \cos(\phi) -r \dot{\phi} \sin(\phi) ,

y ˙ ( t ) = r ˙ sin ( ϕ ) + r ϕ ˙ cos ( ϕ ) \dot{y}(t) = \dot{r} \sin(\phi) +r \dot{\phi} \cos(\phi) ,

z ˙ ( t ) = z ˙ \dot{z}(t) = \dot{z} .

The kinetic energy in cylindrical coordinates is finally calculated according to:

E k i n = m 2 v 2 = m 2 [ ( r ˙ cos ( ϕ ) r ϕ ˙ sin ( ϕ ) ) 2 + ( r ˙ sin ( ϕ ) + r ϕ ˙ cos ( ϕ ) ) 2 + z ˙ 2 ] ; E_{kin} = \frac{m}{2} |\vec{v}|^2 = \frac{m}{2} \cdot [( \dot{r} \cos(\phi) -r \dot{\phi} \sin(\phi))^2 + (\dot{r} \sin(\phi) +r \dot{\phi} \cos(\phi))^2 + \dot{z}^{2}];

or m 2 [ [ r ˙ 2 cos 2 ( ϕ ) 2 r r ˙ ϕ ˙ cos ( ϕ ) sin ( ϕ ) ) + r 2 ϕ ˙ 2 sin 2 ( ϕ ) ] + [ r ˙ 2 sin 2 ( ϕ ) + 2 r r ˙ ϕ ˙ cos ( ϕ ) sin ( ϕ ) ) + r 2 ϕ ˙ 2 cos 2 ( ϕ ) ] + z ˙ 2 ] ; \frac{m}{2} \cdot [ [\dot{r}^{2} \cos^{2}(\phi) -2r\dot{r} \dot{\phi} \cos(\phi)\sin(\phi)) + r^2 \dot{\phi}^{2} \sin^{2}(\phi)] + [\dot{r}^{2} \sin^{2}(\phi) + 2r\dot{r} \dot{\phi} \cos(\phi)\sin(\phi)) + r^2 \dot{\phi}^{2} \cos^{2}(\phi)] + \dot{z}^{2}];

or m 2 [ [ r ˙ 2 cos 2 ( ϕ ) + r 2 ϕ ˙ 2 sin 2 ( ϕ ) ] + [ r ˙ 2 sin 2 ( ϕ ) + r 2 ϕ ˙ 2 cos 2 ( ϕ ) ] + z ˙ 2 ] ; \frac{m}{2} \cdot [ [\dot{r}^{2} \cos^{2}(\phi) + r^2 \dot{\phi}^{2} \sin^{2}(\phi)] + [\dot{r}^{2} \sin^{2}(\phi) + r^2 \dot{\phi}^{2} \cos^{2}(\phi)] + \dot{z}^{2}];

or m 2 [ r ˙ 2 [ cos 2 ( ϕ ) + sin 2 ( ϕ ) ] + r 2 ϕ ˙ 2 [ sin 2 ( ϕ ) + cos 2 ( ϕ ) ] + z ˙ 2 ] ; \frac{m}{2} \cdot [ \dot{r}^{2} [\cos^{2}(\phi) + \sin^{2}(\phi)] + r^2 \dot{\phi}^{2} [\sin^{2}(\phi) + \cos^{2}(\phi)] + \dot{z}^{2}];

or m 2 [ r ˙ 2 + r 2 ϕ ˙ 2 + z ˙ 2 ] . \boxed{\frac{m}{2} \cdot [ \dot{r}^{2} + r^2 \dot{\phi}^{2} + \dot{z}^{2}]}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...