Exponential And Polynomials In One Sum?

Algebra Level 5

n = 2 n 4 + 3 n 2 + 10 n + 10 2 n ( n 4 + 4 ) = a b \large \displaystyle \sum_{n = 2}^{\infty} \dfrac{n^4 + 3n^2 + 10n + 10}{2^{n} (n^4 + 4)} = \dfrac ab

The above equation is true for some coprime positive integers a a and b b . Find a + b a + b ?


The answer is 21.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jun 27, 2016

Relevant wiki: Telescoping Series - Sum

\begin{aligned} S & = \sum_{n=2}^\infty \frac {n^4+3n^2+10n+10}{2^n(n^4+4)} \\ & = \sum_{n=2}^\infty \left(\frac 1{2^n} + \frac {3n^2+10n+6}{2^n\color{#3D99F6}{(n^4+4)}} \right) \quad \quad \small \color{#3D99F6}{\text{Note that }n^4+4 = (n^2+2n+2)(n^2-2n+2)} \\ & = \sum_{n=2}^\infty \left(\frac 1{2^n} + \frac {4(n^2+2n+2)-(n^2-2n+2)}{2^n\color{#3D99F6}{(n^2+2n+2)(n^2-2n+2)}} \right) \\ & = \sum_{n=2}^\infty \frac 1{2^n} + 4 \sum_{n=2}^\infty \frac 1{2^n(n^2-2n+2)} - \sum_{n=\color{#D61F06}{2}}^\infty \frac 1{2^\color{#D61F06}{n}(\color{#D61F06}{n}^2+2\color{#D61F06}{n}+2)} \\ & = \sum_{n=2}^\infty \frac 1{2^n} + 4 \sum_{n=2}^\infty \frac 1{2^n(n^2-2n+2)} - \sum_{n=\color{#D61F06}{4}}^\infty \frac 1{2^\color{#D61F06}{n-2}(\color{#D61F06}{(n-2)}^2+2\color{#D61F06}{(n-2)}+2)} \\ & = \sum_{n=2}^\infty \frac 1{2^n} + 4 \sum_{n=2}^\infty \frac 1{2^n(n^2-2n+2)} - \color{#D61F06}{4} \sum_ {n= \color{#D61F06}{4}}^\infty \frac 1{2^\color{#D61F06}{n}\color{#D61F06}{(n^2-2n+2)}} \\ & = \sum_{n=2}^\infty \frac 1{2^n} + \color{#D61F06}{4}\sum_{n= \color{#D61F06}{2}}^\color{#D61F06}{3} \frac 1{2^\color{#D61F06}{n}\color{#D61F06}{(n^2-2n+2)}} \\ & = \frac 1{2^2} \left(\frac 1{1-\frac 12} \right) + 4 \left(\frac 1{4(4-4+2)} + \frac 1{8(9-6+2)} \right) \\ & = \frac 12 + \frac 12 + \frac 1{10} = \frac {11}{10} \end{aligned}

a + b = 11 + 10 = 21 \implies a + b = 11 + 10 = \boxed{21}

Exactly the same solution :)

Aditya Sky - 4 years, 11 months ago

So we are both as smart but not smarter.

Chew-Seong Cheong - 4 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...