King's Property Integration

Calculus Level 3

0 π 2 sin 3 x sin x + cos x d x = ? \int_0^\frac \pi 2 \frac{\sin^3 x}{\sin x+\cos x} dx =\ ?

π 4 1 4 \frac{\pi}{4}-\frac{1}{4} π 4 1 \frac \pi 4 - 1 π 2 1 2 \frac{\pi}{2}-\frac{1}{2} π 2 1 4 \frac{\pi}{2}-\frac{1}{4}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

ChengYiin Ong
Nov 9, 2019

We will first introduce the King's Property or the reflection property which is the following:

a b f ( x ) d x = a b f ( a + b x ) d x \int_a^b f(x) dx = \int_a^b f(a+b-x) dx

This is true because we can let u = a + b x u=a+b-x , then

a b f ( a + b x ) d x = b a f ( u ) d u = a b f ( u ) d u = a b f ( x ) d x \int_a^b f(a+b-x) dx = -\int_b^a f(u) du = \int_a^b f(u) du = \int_a^b f(x) dx

So, in our problem we can see that

I = 0 π 2 sin 3 x sin x + cos x d x = 0 π 2 cos 3 x sin x + cos x d x I=\int_0^\frac \pi 2 \frac{\sin^3 x}{\sin x+\cos x} dx = \int_0^\frac \pi 2 \frac{\cos^3 x}{\sin x+\cos x} dx

Adding these two together, we get

2 I = 0 π 2 sin 3 x + cos 3 x sin x + cos x d x 2I=\int_0^\frac \pi 2 \frac{\sin^3 x+\cos^3 x}{\sin x+\cos x} dx

= 0 π 2 ( sin x + cos x ) ( sin 2 x sin x cos x + sin 2 x ) sin x + cos x d x =\int_0^\frac \pi 2 \frac{(\sin x+\cos x)(\sin^2 x-\sin x\cos x+\sin^2 x)}{\sin x+\cos x} dx

= 0 π 2 1 sin x cos x d x =\int_0^\frac \pi 2 1-\sin x\cos x dx

= 0 π 2 1 d x 0 π 2 sin x cos x d x =\int_0^\frac \pi 2 1 dx - \int_0^\frac \pi 2 \sin x \cos x dx

= π 2 0 1 u d u =\frac \pi 2 - \int_0^1 u du ( u = sin x , d u = cos x d x ) (u =\sin x, du =\cos x dx)

= π 2 1 2 =\frac \pi 2 - \frac 1 2

I = π 4 1 4 \Rightarrow I=\frac \pi 4 - \frac 1 4

Chew-Seong Cheong
Nov 10, 2019

Similar solution as @ChengYiin Ong 's

I = 0 π 2 sin 3 x sin x + cos x d x By reflection a b f ( x ) d x = a b f ( a + b x ) d x = 1 2 0 π 2 ( sin 3 x sin x + cos x + cos 3 x cos x + sin x ) d x = 1 2 0 π 2 ( sin x + cos x ) ( sin 2 x sin x cos x + cos 2 x ) sin x + cos x d x = 1 2 0 π 2 ( 1 sin x cos x ) d x = 1 2 0 π 2 ( 1 1 2 sin 2 x ) d x = 1 2 [ x + 1 4 cos 2 x ] 0 π 2 = π 4 1 4 \begin{aligned} I & = \int_0^\frac \pi 2 \frac {\sin^3 x}{\sin x + \cos x} dx & \small \blue{\text{By reflection }\int_a^b f(x) \ dx = \int_a^b f(a+b-x) \ dx} \\ & = \frac 12 \int_0^\frac \pi 2 \left(\frac {\sin^3 x}{\sin x + \cos x} + \frac {\cos^3 x}{\cos x + \sin x} \right) dx \\ & = \frac 12 \int_0^\frac \pi 2 \frac {(\sin x+\cos x)\left(\sin^2 x - \sin x \cos x + \cos^2 x \right)}{\sin x + \cos x} dx \\ & = \frac 12 \int_0^\frac \pi 2 \left(1 - \sin x \cos x \right) dx \\ & = \frac 12 \int_0^\frac \pi 2 \left(1 - \frac 12 \sin 2x \right) dx \\ & = \frac 12 \left[x + \frac 14 \cos 2x \right]_0^\frac \pi 2 \\ & = \boxed{\frac \pi 4 - \frac 14} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...