∫ 0 2 π sin x + cos x sin 3 x d x = ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Similar solution as @ChengYiin Ong 's
I = ∫ 0 2 π sin x + cos x sin 3 x d x = 2 1 ∫ 0 2 π ( sin x + cos x sin 3 x + cos x + sin x cos 3 x ) d x = 2 1 ∫ 0 2 π sin x + cos x ( sin x + cos x ) ( sin 2 x − sin x cos x + cos 2 x ) d x = 2 1 ∫ 0 2 π ( 1 − sin x cos x ) d x = 2 1 ∫ 0 2 π ( 1 − 2 1 sin 2 x ) d x = 2 1 [ x + 4 1 cos 2 x ] 0 2 π = 4 π − 4 1 By reflection ∫ a b f ( x ) d x = ∫ a b f ( a + b − x ) d x
Problem Loading...
Note Loading...
Set Loading...
We will first introduce the King's Property or the reflection property which is the following:
∫ a b f ( x ) d x = ∫ a b f ( a + b − x ) d x
This is true because we can let u = a + b − x , then
∫ a b f ( a + b − x ) d x = − ∫ b a f ( u ) d u = ∫ a b f ( u ) d u = ∫ a b f ( x ) d x
So, in our problem we can see that
I = ∫ 0 2 π sin x + cos x sin 3 x d x = ∫ 0 2 π sin x + cos x cos 3 x d x
Adding these two together, we get
2 I = ∫ 0 2 π sin x + cos x sin 3 x + cos 3 x d x
= ∫ 0 2 π sin x + cos x ( sin x + cos x ) ( sin 2 x − sin x cos x + sin 2 x ) d x
= ∫ 0 2 π 1 − sin x cos x d x
= ∫ 0 2 π 1 d x − ∫ 0 2 π sin x cos x d x
= 2 π − ∫ 0 1 u d u ( u = sin x , d u = cos x d x )
= 2 π − 2 1
⇒ I = 4 π − 4 1