Kiriti's sum

Consider the sequence { a n } \{ a_n\} defined by a 1 = 2 2013 a_1 = 2^{2013} and the recurrence relation

1 a k = 1 a 1 + 1 a 2 + 1 a 3 + + 1 a k 1 for k > 1. \frac {1}{a_k} = \frac {1}{a_1} + \frac {1}{a_2} +\frac {1}{a_3}+ \cdots +\frac {1}{a_{k-1}} \mbox{ for } k>1.

What is the value of a 2013 a_{2013} ?

This problem is posed by Kiriti M .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

7 solutions

Yash Farooqui
Sep 29, 2013

First of all, note that, by simple computation, a 2 = 2 2013 a_2 =2^{2013} .

Next, note that for k 3 k \geq 3 , we can make the following manipulation. Given:

1 a k = 1 a 1 + + 1 a k 2 + 1 a k 1 \frac{1}{a_k}=\frac{1}{a_1}+\ldots+\frac{1}{a_{k-2}}+\frac{1}{a_{k-1}} 1 a k 1 = 1 a 1 + 1 a 2 + + 1 a k 2 \frac{1}{a_{k-1}}=\frac{1}{a_1}+\frac{1}{a_2}+\ldots+\frac{1}{a_{k-2}}

We can group together the first few terms in the first recursion to find:

1 a k = ( 1 a 1 + 1 a 2 + + 1 a k 2 ) + 1 a k 1 = 1 a k 1 + 1 a k 1 = 2 a k 1 \frac{1}{a_k}=(\frac{1}{a_1}+\frac{1}{a_2}+\ldots+\frac{1}{a_{k-2}})+\frac{1}{a_{k-1}} =\frac{1}{a_{k-1}}+\frac{1}{a_{k-1}}=\frac{2}{a_{k-1}}

Note the penultimate step used the recursion for 1 a k 1 \frac{1}{a_{k-1}} to collect together the terms of a sum.

From this manipulation, we unearth the recursion a k = a k 1 2 a_k =\frac{a_{k-1}}{2} valid for k > 2 k>2 .

From here, we can easily find an explicit formula, valid for k 2 k \geq 2 :

a k = 2 2 k a 2 = 2 2 k × 2 2013 = 2 2015 k a_k=2^{2-k} a_2=2^{2-k} \times 2^{2013}= 2^{2015-k}

Plugging in k = 2013 k=2013 gives our desired answer of 4 \mathbf{4}

Nice

Yow Ka Shing - 7 years, 8 months ago

I don't get how a1 = a2 :(

Ayush Kumar - 7 years, 8 months ago

Log in to reply

1 a 2 = 1 a 2 1 = 1 a 1 \frac{1}{a_{2}}=\frac{1}{a_{2-1}}=\frac{1}{a_{1}}

oky markianto - 7 years, 8 months ago
Lokesh Sharma
Sep 29, 2013

Notice,

1 a 2 = 1 a 1 \frac{1}{a_{2}} = \frac{1}{a_{1}}

1 a 3 = 1 a 1 + 1 a 2 = 2 a 1 \frac{1}{a_{3}} = \frac{1}{a_{1}} + \frac{1}{a_{2}} = \frac{2}{a_{1}}

1 a 4 = 1 a 1 + 1 a 2 + 1 a 3 = 2 a 3 = 4 a 1 \frac{1}{a_{4}} = \frac{1}{a_{1}} + \frac{1}{a_{2}} + \frac{1}{a_{3}} = \frac{2}{a_{3}} = \frac{4}{a_{1}}

Through deductive reasoning,

1 a n = 2 n 2 a 1 \frac{1}{a_{n}} = \frac{2^{n-2}}{a_{1}}

a 2013 = 2 2013 ( 2013 2 ) = 4 \Rightarrow a_{2013} = 2^{2013 - (2013 - 2)} = 4

Luuk Weyers
Sep 30, 2013

With complete induction ( 2 n ) (2 \le n) it can be shown that a n = 2 2013 2 n 2 = 2 2015 n a_{n} = \frac{2^{2013}}{2^{n-2}}= 2^{2015-n} .

So: a 2013 = 2 2015 2013 = 4. a_{2013} = 2^{2015-2013} = 4.

Oliver Welsh
Sep 30, 2013

Let 2 2013 = a 2^{2013} = a , then we find that:

a 1 = a a_1 = a a 2 = a a_2 = a a 3 = a 2 a_3 = \frac{a}{2} a 4 = a 4 a_4 = \frac{a}{4}

In general, it can be stated that:

a n = a 2 n 2 , n > 1 a_n = \frac{a}{2^{n-2}}, n > 1

where n n and a a are the term number and starting value respectivley. Therefore, to calculate the 201 3 t h 2013^{th} term, we find that:

a 2013 = 2 2013 2 2011 = 2 2 = 4 a_{2013} = \frac{2^{2013}}{2^{2011}} = 2^2 = \fbox4

Lee Wall
Feb 25, 2014

It is not obvious how to proceed immediately, so let's evaluate the first few terms of the sequence. Using the recursion, we get 1 / a 2 = 1 / 2 2013 , 1 / a 3 = 2 / 2 2013 , 1 / a 4 = 4 / 2 2013 1/a_2 = 1/2^{2013}, 1/a_3 = 2/2^{2013}, 1/a_4 = 4/2^{2013} and so on. One can easily show that 1 a k = 1 2 2013 k = 0 2 k 3 \frac{1}{a_k} = \frac{1}{2^{2013}} \cdot \sum_{k=0}^{2^{k-3}} for every integer k k greater than 1 1 by induction. The reciprocal of the 2013 2013 th term is therefore 1 2 2013 k = 0 k = 2 2010 = 1 / 4 \frac{1}{2^{2013}} \cdot \sum_{k = 0}^{k=2^{2010}} = 1/4 , so the answer is 1 1 / 4 = 004 \frac{1}{1/4} = \boxed{004} .

Jatin Yadav
Oct 3, 2013

1 a k = 1 a 1 + 1 a 2 + + 1 a k 1 \frac{1}{a_{k}} = \frac{1}{a_{1}} + \frac{1}{a_{2}} + \dots + \frac{1}{a_{k - 1}}

2 a k = 1 a 1 + 1 a 2 + + 1 a k 1 + 1 a k = 1 a k + 1 \Rightarrow \frac{2}{a_{k}} = \frac{1}{a_{1}} + \frac{1}{a_{2}} + \dots + \frac{1}{a_{k - 1}} +\frac{1}{a_{k}} = \frac{1}{a_{k + 1}}

a k + 1 = a k 2 a_{k + 1} = \frac{a_{k}}{2} for k > 1 k > 1 , and a 2 = a 1 a_{2} = a_{1}

Hence, a 2013 = a 2 2 2011 = a 1 2 2011 = 4 a_{2013} = \frac{a_{2}}{2^{2011}} = \frac{a_{1}}{2^{2011}} = \fbox{4}

we've :

a 1 = 2 2013 a_1 = 2^{2013} and 1 a 1 = 1 2 2013 \frac{1}{a_1} = \frac{1}{2^{2013}}

so:

1 a 2 = 1 a 1 = 1 2 2013 \frac{1}{a_2} = \frac{1}{a_1} = \frac{1}{2^{2013}}

1 a 3 = 1 a 2 + 1 a 1 = 1 2 2013 + 1 2 2013 = 2 2 2013 \frac{1}{a_3} = \frac{1}{a_2} + \frac{1}{a_1} = \frac{1}{2^{2013}} + \frac{1}{2^{2013}} = \frac{2}{2^{2013}}

1 a 4 = 1 a 3 + 1 a 2 + 1 a 1 = 2 2 2013 + 1 2 2013 + 1 2 2013 = 4 2 2013 = 2 2 2 2013 \frac{1}{a_4} = \frac{1}{a_3} + \frac{1}{a_2} + \frac{1}{a_1} = \frac{2}{2^{2013}} + \frac{1}{2^{2013}} + \frac{1}{2^{2013}} = \frac{4}{2^{2013}} = \frac{2^2}{2^{2013}}

1 a 5 = 1 a 4 + 1 a 3 + 1 a 2 + 1 a 1 = 4 2 2013 + 2 2 2013 + 1 2 2013 + 1 2 2013 = 8 2 2013 = 2 3 2 2013 \frac{1}{a_5} = \frac{1}{a_4} + \frac{1}{a_3} + \frac{1}{a_2} + \frac{1}{a_1} = \frac{4}{2^{2013}} + \frac{2}{2^{2013}} + \frac{1}{2^{2013}} + \frac{1}{2^{2013}} = \frac{8}{2^{2013}} = \frac{2^3}{2^{2013}}

so the pattern is 1 a k = 2 k 2 a 1 \frac{1}{a_k} = \frac{2^{k-2}}{a_1} for k > 1 k > 1 so :

1 a 2013 = 2 2013 2 a 1 = 2 2013 2 2 2013 = 1 4 \frac{1}{a_{2013}} = \frac{2^{2013-2}}{a_1} = \frac{2^{2013-2}}{2^{2013}} = \frac{1}{4} , a 2013 = 4 a_{2013} = 4

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...