Kite Problem!

Geometry Level 3

A B AB is a chord of the circle x 2 + y 2 = r 2 x^2 + y^2 = r^2 and the tangents at A A and B B meet at C C . If M ( 1 , 2 ) M(1,2) is the midpoint of A B AB and the area A O A C B = 11 5 r 2 A_{OACB} = \sqrt{\dfrac{11}{5}}r^2 , find the radius r r of the circle.


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Chew-Seong Cheong
Jul 24, 2020

Let A C = B C = l AC=BC=l . We note that C B O = C A O = 9 0 \angle CBO = \angle CAO = 90^\circ . Then A O A C B = 2 × r l 2 = r l = 11 5 r 2 l = 11 5 r l r = 11 5 A_{OACB} = 2 \times \dfrac {rl}2 = rl = \sqrt{\dfrac {11}5}r^2 \implies l = \sqrt{\dfrac {11}5} r \implies \dfrac l r = \sqrt{\dfrac {11}5} . We also note that B M O \triangle BMO and C B O \triangle CBO are similar. Therefore B M O M = l r = 11 5 B M = 11 5 O M = 11 5 × ( 1 0 ) 2 + ( 2 0 ) 2 = 11 \dfrac {BM}{OM} = \dfrac lr = \sqrt{\dfrac {11}5} \implies BM = \sqrt{\dfrac {11}5} OM = \sqrt{\dfrac {11}5} \times \sqrt{(1-0)^2+(2-0)^2} = \sqrt{11} . By Pythagorean theorem , r 2 = O M 2 + B M 2 = 5 + 11 = 16 r = 4 r^2 = OM^2 + BM^2 = 5 + 11 = 16 \implies r = \boxed 4 .

Rocco Dalto
Jul 23, 2020

O M = 5 M B = M A = r 2 5 A B = 2 r 2 5 OM = \sqrt{5} \implies MB = MA = \sqrt{r^2 - 5} \implies AB = 2\sqrt{r^2 - 5} \implies

A O A B = 1 2 ( A B ) ( O M ) = 5 r 2 5 A_{\triangle{OAB}} = \dfrac{1}{2}(AB)(OM) = \sqrt{5}\sqrt{r^2 - 5}

O A M M A C \triangle{OAM} \sim \triangle{MAC} \implies r 2 5 5 = h r 2 5 h = r 2 5 5 \dfrac{\sqrt{r^2 - 5}}{\sqrt{5}} = \dfrac{h}{\sqrt{r^2 - 5}} \implies h = \dfrac{r^2 - 5}{\sqrt{5}} \implies

A A C B = 1 2 ( A B ) ( h ) = ( r 2 5 ) r 2 5 5 A_{\triangle{ACB}} = \dfrac{1}{2}(AB)(h) = (r^2 - 5)\dfrac{\sqrt{r^2 - 5}}{\sqrt{5}}

A O A C B = A O A B + A A C B = r 2 5 5 r 2 = \implies A_{OACB} = A_{\triangle{OAB}} + A_{\triangle{ACB}} = \sqrt{\dfrac{r^2 - 5}{5}} r^2 = 11 5 r 2 \sqrt{\dfrac{11}{5}}r^2

r 2 5 5 = 11 5 r = 4 \implies \dfrac{r^2 - 5}{5} = \dfrac{11}{5} \implies r = \boxed{4}

Good to see you :)

Valentin Duringer - 9 months, 3 weeks ago

The equation of the line O M OM is y = 2 x y=2x . Hence, y C = 2 x C {{y}_{C}}=2{{x}_{C}} .
M M is the midpoint of A B AB , thus O M A B OM\bot AB , so the gradient of the line A B AB is 1 2 -\dfrac{1}{2}
and its equation is y 2 = 1 2 ( x 1 ) y = 1 2 x + 5 2 ( 1 ) y-2=-\dfrac{1}{2}\left( x-1 \right)\Leftrightarrow y=-\dfrac{1}{2}x+\dfrac{5}{2}\ \ \ \ \ \left( 1 \right) .

On the other hand, A B AB is the polar of the point C C with respect to the circle, therefore its equation can be written as:
x C x + y C y = r 2 {{x}_{C}}\cdot x+{{y}_{C}}\cdot y={{r}^{2}} which rearranges to y = x C y C x + r 2 y C y = 1 2 x + r 2 2 x C ( 2 ) y=-\frac{{{x}_{C}}}{{{y}_{C}}}x+\dfrac{{{r}^{2}}}{{{y}_{C}}}\Leftrightarrow y=-\dfrac{1}{2}x+\dfrac{{{r}^{2}}}{2{{x}_{C}}} \ \ \ \ \ \left( 2 \right)

( 1 ) , ( 2 ) r 2 2 x C = 5 2 x C = r 2 5 \left( 1 \right),\left( 2 \right)\Rightarrow \dfrac{{{r}^{2}}}{2{{x}_{C}}}=\dfrac{5}{2}\Leftrightarrow {{x}_{C}}=\dfrac{{{r}^{2}}}{5} , therefore, the coordinates of the point C C are ( r 2 5 , 2 r 2 5 ) \left( \dfrac{{{r}^{2}}}{5},\ \dfrac{2{{r}^{2}}}{5} \right) .
Hence, O C = x C 2 + y C 2 = r 2 5 OC=\sqrt{{{x}_{C}}^{2}+{{y}_{C}}^{2}}=\dfrac{{{r}^{2}}}{\sqrt{5}} and A C = r 4 5 r 2 = r 4 5 r 2 AC=\sqrt{\dfrac{{{r}^{4}}}{5}-{{r}^{2}}}=\sqrt{\dfrac{{{r}^{4}}}{5}-{{r}^{2}}} .

This gives A O A C B = 2 A O A C = 2 1 2 O A A C = r r 4 5 r 2 {{A}_{OACB}}= 2{{A}_{OAC}}=2\cdot \frac{1}{2}\cdot OA\cdot AC=r\sqrt{\frac{{{r}^{4}}}{5}-{{r}^{2}}} .

Finally, A O A C B = 11 5 r r r 4 5 r 2 = 11 5 r r 2 ( r 4 5 r 2 ) = 11 5 r 2 r = 4 . \begin{aligned} {{A}_{OACB}}=\sqrt{\frac{11}{5}}r & \Leftrightarrow r\sqrt{\frac{{{r}^{4}}}{5}-{{r}^{2}}}=\sqrt{\frac{11}{5}}r \\ & \Leftrightarrow {{r}^{2}}\left( \frac{{{r}^{4}}}{5}-{{r}^{2}} \right)=\frac{11}{5}{{r}^{2}} \\ & \Leftrightarrow r=\boxed{4}. \\ \end{aligned}

Let O B \overline {OB} and O A \overline {OA} make angles α α and β β with the x x -axis. Then slope of A B \overline {AB} is

sin α sin β cos α cos β = cot ( α + β 2 ) \dfrac {\sin α-\sin β}{\cos α-\cos β}=-\cot (\frac{α+β}{2})

Slope of O C \overline {OC} is 2 2 . Since A B \overline {AB} is perpendicular to O C \overline {OC} , therefore

tan ( α + β 2 ) = 2 cos ( α + β 2 ) = 1 5 \tan (\frac{α+β}{2})=2\implies \cos (\frac{α+β}{2})=\dfrac {1}{\sqrt 5}

A C = r tan ( β α 2 ) |\overline {AC}|=r\tan (\frac{β-α}{2})

Areas of triangles O A C \triangle {OAC} and O B C \triangle {OBC} are equal. So, area of O A C B OACB is

2 × 1 2 × r × r tan ( β α 2 ) = r 2 tan ( β α 2 ) 2\times \dfrac 12\times r\times r\tan (\frac{β-α}{2})=r^2\tan (\frac{β-α}{2})

= 11 5 r 2 =\sqrt {\dfrac {11}{5}}r^2

tan ( β α 2 ) = 11 5 \implies \tan (\frac{β-α}{2})=\sqrt {\dfrac {11}{5}}

cos ( β α 2 ) = 5 4 \implies \cos (\frac{β-α}{2})=\dfrac {\sqrt 5}{4}

Also, we have

r cos α + r cos β 2 = 1 \dfrac {r\cos α+r\cos β}{2}=1

r = 2 cos α + cos β \implies r=\dfrac {2}{\cos α+\cos β}

= 1 cos ( α + β 2 ) cos ( β α 2 ) =\dfrac {1}{\cos (\frac{α+β}{2})\cos (\frac{β-α}{2})}

= 1 1 5 × 5 4 = 4 =\dfrac {1}{\frac{1}{\sqrt 5}\times \frac{\sqrt 5}{4}}=\boxed 4 .

Rotation about the origin will preserve the distance O M O M \left | OM\right |\mapsto\left | OM'\right | . We then imagine the kite rotated around such that C C is above the origin, as shown. [https://www.desmos.com/calculator/hysbdxaoc9](https://www.desmos.com/calculator/hysbdxaoc9) https://www.desmos.com/calculator/hysbdxaoc9

O M = 2 2 + 1 2 M = ( 0 , 5 ) \left | OM'\right |=\sqrt{2^2+1^2}\implies M'=\left (0, \sqrt 5\right ) . Since O A OA' and O B OB' are radii, then A = ( r 2 5 , 5 ) A'=\left (-\sqrt{r^2-5}, \sqrt5\right ) and B = ( r 2 5 , 5 ) B'=\left (\sqrt{r^2-5}, \sqrt5\right ) .

The gradient of O A = 5 r 2 5 OA'=-\dfrac{\sqrt{5}}{\sqrt{r^2-5}} , so the gradient of A C = r 2 5 5 A'C'=\dfrac{\sqrt{r^2-5}}{\sqrt 5}\because the product of perpendicular gradients = 1 =-1 .

The line A C A'C' is described by: y 5 = r 2 5 5 ( x + r 2 5 ) At C , x = 0 y = r 2 5 5 + 5 C = ( 0 , r 2 5 5 + 5 ) \begin{aligned}y-\sqrt 5&=\frac{\sqrt{r^2-5}}{\sqrt 5}\left (x+\sqrt{r^2-5}\right )\\\textnormal{At }C', x=0\implies y&=\frac{r^2-5}{\sqrt 5}+\sqrt 5\\\therefore C'&=\left (0, \frac{r^2-5}{\sqrt 5}+\sqrt 5\right )\end{aligned}

The area of a kite is half the product of its diagonals, where A B = 2 r 2 5 \left | A'B'\right |=2\sqrt{r^2-5} and O C = r 2 5 5 + 5 \left | OC'\right |=\dfrac{r^2-5}{\sqrt 5}+\sqrt 5 .

We then have that:

Area OACB = 2 11 5 r 2 ( r 2 5 5 + 5 ) ( 2 r 2 5 ) = 2 11 5 r 2 2 ( r 2 5 ) 3 2 5 + 2 ( 5 r 2 25 ) 1 2 = 2 11 5 r 2 2 ( r 2 5 ) 3 2 5 + 2 ( 25 r 2 125 ) 1 2 5 = 2 11 5 r 2 2 ( r 2 5 ) 3 2 + 2 ( 25 r 2 125 ) 1 2 = 2 11 r 2 ( 2 r 2 10 ) r 2 5 + 10 r 2 5 = 2 11 r 2 2 r 2 r 2 5 = 2 11 r 2 \begin{aligned}\textnormal{Area OACB}&=2\sqrt{\frac{11}{5}}r^2\\\iff \left (\frac{r^2-5}{\sqrt 5}+\sqrt 5\right )\left ( 2\sqrt{r^2-5}\right )&=2\sqrt{\frac{11}{5}}r^2\\\iff \frac{2\left (r^2-5\right )^{\frac{3}{2}}}{\sqrt{5}}+2\left (5r^2-25\right )^{\frac{1}{2}}&=2\sqrt{\frac{11}{5}}r^2\\\iff \frac{2\left (r^2-5\right )^{\frac{3}{2}}}{\sqrt{5}}+\frac{2\left (25r^2-125\right )^{\frac{1}{2}}}{\sqrt 5}&=\frac{2\sqrt{11}}{\sqrt{5}}r^2\\\iff 2\left (r^2-5\right )^\frac{3}{2}+2\left (25r^2-125\right )^{\frac{1}{2}}&=2\sqrt{11}r^2\\\iff \left (2r^2-10\right )\sqrt{r^2-5}+10\sqrt{r^2-5}&=2\sqrt{11}r^2\\\iff 2r^2\sqrt{r^2-5}&=2\sqrt{11}r^2\end{aligned}

So that r = 0 r=0 or r 2 5 = 11 r 2 = 16 r = ± 4 \sqrt{r^2-5}=\sqrt {11}\implies r^2=16\iff r=\pm 4 .

Since we don't get a circle if r = 4 r=-4 or r = 0 r=0 , the radius r r of the circle is 4 \color{#20A900}{\boxed{4}} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...