Know the logic?

Algebra Level 3

If a + b + c = 0 a+b+c=0 , then x a 2 b 1 c 1 x b 2 a 1 c 1 x c 2 a 1 b 1 = ? x^{a^2 b^{-1} c^{-1}} x^{b^2 a^{-1} c^{-1}} x^{c^2 a^{-1} b^{-1}} = \ ?

x^3 x^1/2 x^(1/a^2 b^2 c^2) x^(a^2 b^2 c^2)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sabhrant Sachan
Jun 25, 2016

x a 2 b 1 c 1 x b 2 a 1 c 1 x c 2 b 1 a 1 x a 2 b c + b 2 a c + c 2 a b If a + b + c = 0 , a 3 + b 3 + c 3 = 3 a b c As a 3 + b 3 + c 3 3 a b c = ( a + b + c ) ( a 2 + b 2 + c 2 a b b c c a ) a 2 b c + b 2 a c + c 2 a b 1 a b c ( a 3 + b 3 + c 3 ) = 3 Answer : x 3 x^{a^{2}b^{-1}c^{-1}}x^{b^{2}a^{-1}c^{-1}}x^{c^{2}b^{-1}a^{-1}} \implies x^{\frac{a^{2}}{bc}+\frac{b^{2}}{ac}+\frac{c^{2}}{ab} } \\ \text{If } a+b+c=0 \quad , \quad a^3+b^3+c^3=3abc \\ \text{As } \hspace{2mm} a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)\\ \dfrac{a^{2}}{bc}+\dfrac{b^{2}}{ac}+\dfrac{c^{2}}{ab} \implies \dfrac{1}{abc}\left( a^3+b^3+c^3 \right) = 3 \\ \text{Answer : } \boxed{ x^3 }

How did you get x a 2 b 1 c 1 x a 2 b 1 c 1 x a 2 b 1 c 1 x^{a^{2}b^{-1}c^{-1}}x^{a^{2}b^{-1}c^{-1}}x^{a^{2}b^{-1}c^{-1}} and a 3 + b 3 + c 3 = 3 a b c ? a^3+b^3+c^3=3abc?

Nazmus sakib - 3 years, 8 months ago

Log in to reply

My apologies , i have fixed the typo and explained my reasoning properly . Thanks for the correction

Sabhrant Sachan - 3 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...