Know your Limits-1

Calculus Level 3

lim x 1 + ln ( x 1 ) x tan ( π 2 x ) = ? \large \lim_{x \to 1^{+}} \dfrac {\ln(x-1)-x}{\tan \left( \frac \pi{2x}\right)} = \, ?

Clarification : e 2.71828 e \approx 2.71828 denotes Euler's number .

1 2 \frac12 1 1 0 0 e e

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Aug 10, 2016

Relevant wiki: L'Hopital's Rule - Basic

L = lim x 1 ln ( x 1 ) x tan ( π 2 x ) This is a / case, hence L’H o ˆ pital’s rule applies. = lim x 1 1 x 1 1 π 2 x 2 sec 2 ( π 2 x ) Differentiate up and down w.r.t x . = lim x 1 2 x 2 ( x 2 ) cos 2 ( π 2 x ) π ( x 1 ) This is a 0 / 0 case, hence L’H o ˆ pital’s rule applies. = lim x 1 ( 6 x 2 8 x ) cos 2 ( π 2 x ) + ( 2 x 3 4 x 2 ) π 2 x 2 cos ( π 2 x ) sin ( π 2 x ) π = 0 \begin{aligned} L & = \lim_{x \to 1} \frac {\ln(x-1)-x}{\tan \left(\frac \pi {2x} \right)} \quad \quad \small \color{#3D99F6}{\text{This is a }\infty/\infty \text{ case, hence L'Hôpital's rule applies.}} \\ & = \lim_{x \to 1} \frac {\frac 1{x-1}-1}{- \frac \pi{2x^2} \sec^2 \left(\frac \pi {2x} \right)} \quad \quad \small \color{#3D99F6}{\text{Differentiate up and down w.r.t }x.} \\ & = \lim_{x \to 1} \frac {2x^2 (x-2) \cos^2 \left(\frac \pi {2x} \right)}{\pi (x-1)} \quad \quad \small \color{#3D99F6}{\text{This is a }0/0 \text{ case, hence L'Hôpital's rule applies.}} \\ & = \lim_{x \to 1} \frac {(6x^2-8x) \cos^2 \left(\frac \pi {2x} \right)+(2x^3-4x^2) \cdot \frac \pi{2x^2} \cos \left(\frac \pi {2x} \right)\sin \left(\frac \pi {2x} \right)}{\pi} \\ & = \boxed{0} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...