Know your limits

Calculus Level 2

lim x 1 3 + 2 3 + 3 3 + + x 3 ( x 2 + 1 x 2 ) 2 = a b \lim_{x\rightarrow \infty} \frac{1^3+2^3 + 3^3+\ldots+x^3}{\left(x^2+\frac{1}{x^2}\right)^2} = \frac ab

The equation above holds true for positive coprime integers a a and b b . Enter the value of a + b a+b


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

L = lim x 1 3 + 2 3 + 3 3 + + x 3 ( x 2 + 1 x 2 ) 2 = lim x ( x ( x + 1 ) 2 ) 2 ( x 2 + 1 x 2 ) 2 = lim x ( x ( x + 1 ) 2 ( x 2 + 1 x 2 ) ) 2 Divide up and down by x 2 = lim x ( 1 + 1 x 2 2 ( 1 + 1 x 4 ) ) 2 = 1 4 \begin{aligned} L & = \lim_{x \to \infty} \frac {1^3+2^3+3^3+\cdots + x^3}{\left(x^2+\frac 1{x^2}\right)^2} \\ & = \lim_{x \to \infty} \frac {\left(\frac {x(x+1)}2\right)^2}{\left(x^2+\frac 1{x^2}\right)^2} \\ & = \lim_{x \to \infty} \left({\color{#3D99F6}\frac {x(x+1)}{2\left(x^2+\frac 1{x^2}\right)}}\right)^2 & \small \color{#3D99F6} \text{Divide up and down by }x^2 \\ & = \lim_{x \to \infty} \left({\color{#3D99F6} \frac {1+\frac 1{x^2}}{2\left(1+\frac 1{x^4}\right)}}\right)^2 & \small \color{#3D99F6} \\ & = \frac 14 \end{aligned}

Therefore, a + b = 1 + 4 = 5 a+b = 1+4 = \boxed{5} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...