Evaluate x → 1 lim x 2 + x − x − 1 sin ( x 2 − 1 ) . If your answer can be expressed as b a where a and b are coprime positive integers, find the value of a + b .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
x → 1 lim ( x 2 + x − x − 1 sin ( x 2 − 1 ) ) A p p l y i n g L ′ H o p i t a l ′ s R u l e : P l u g i n v a l u e s ∴ b a ⟹ a + b = x → 1 lim ( − x 2 + x − x − 1 sin ( 1 − x 2 ) ) = − x → 1 lim ( x 2 + x − x − 1 sin ( 1 − x 2 ) ) = − x → 1 lim ( 2 x − 2 x 1 + 1 − 2 x cos ( − x 2 + 1 ) ) = − x → 1 lim ( 4 x 2 3 + 2 x − 1 − 4 x 2 3 cos ( 1 − x 2 ) ) = − 4 ⋅ 1 2 3 + 2 ⋅ 1 − 1 − 4 ⋅ 1 2 3 cos ( 1 − 1 2 ) = 5 4 = 4 + 5 = 9 x → a lim [ c ⋅ f ( x ) ] = c ⋅ x → a lim f ( x )
Applying L'Hopital's rule, x → 1 lim x 2 + x − x − 1 sin ( x 2 − 1 ) = x → 1 lim 2 x + 1 − 2 x 1 2 x cos ( x 2 − 1 ) = 2 + 1 − 2 1 2 = 3 − 2 1 2 = 6 − 1 4 = 5 4 .
So a=4 and b=5. a + b = 9
Problem Loading...
Note Loading...
Set Loading...
Without using L'Hopital's rule, we can write the expression as x → 1 lim sin ( x 2 − 1 ) x 2 + x − x − 1 1 x → 1 lim sin ( x 2 − 1 ) x 2 − 1 + sin ( x 2 − 1 ) x − x 1 x → 1 lim sin ( x 2 − 1 ) x 2 − 1 + sin ( x 2 − 1 ) x ( x − 1 ) 1 x → 1 lim x 2 − 1 sin ( x 2 − 1 ) 1 + x ( x − 1 ) sin ( x 2 − 1 ) 1 1 now, we know that x → 1 lim x 2 − 1 sin ( x 2 − 1 ) = 1 , the other one needs a little bit of extra work x → 1 lim 1 1 + x ( x − 1 ) sin ( x 2 − 1 ) x + 1 x + 1 1 1 x → 1 lim 1 + x ( x − 1 ) sin ( x 2 − 1 ) ( x + 1 ) x + 1 x + 1 1 1
x → 1 lim 1 + x ( x 2 − 1 ) sin ( x 2 − 1 ) ( x + 1 ) ( x + 1 ) 1 1 we can apply the same limit as before x → 1 lim 1 + x ( x + 1 ) ( x + 1 ) 1 1 now we can take the limit 1 + 4 1 1 = 5 4 , so the answer is 4 + 5 = 9