Know your limits! (II)

Calculus Level 2

Evaluate lim x 1 sin ( x 2 1 ) x 2 + x x 1 . \lim_{x\rightarrow1} \frac{\sin (x^2-1)}{x^2+x-\sqrt{x}-1} . If your answer can be expressed as a b \dfrac{a}{b} where a a and b b are coprime positive integers, find the value of a + b a+b .


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Romeo Gomez
Mar 22, 2018

Without using L'Hopital's rule, we can write the expression as lim x 1 1 x 2 + x x 1 sin ( x 2 1 ) \lim_{x\rightarrow 1}\frac{1}{\frac{x^2+x-\sqrt{x}-1}{\sin(x^2-1)}} lim x 1 1 x 2 1 sin ( x 2 1 ) + x x sin ( x 2 1 ) \lim_{x\rightarrow 1}\frac{1}{\frac{x^2-1}{\sin(x^2-1)}+\frac{x-\sqrt{x}}{\sin(x^2-1)}} lim x 1 1 x 2 1 sin ( x 2 1 ) + x ( x 1 ) sin ( x 2 1 ) \lim_{x\rightarrow 1}\frac{1}{\frac{x^2-1}{\sin(x^2-1)}+\frac{\sqrt{x}(\sqrt{x}-1)}{\sin(x^2-1)}} lim x 1 1 1 sin ( x 2 1 ) x 2 1 + 1 sin ( x 2 1 ) x ( x 1 ) \lim_{x\rightarrow 1}\frac{1}{\frac{1}{\frac{\sin(x^2-1)}{x^2-1}}+\frac{1}{\frac{\sin(x^2-1)}{\sqrt{x}(\sqrt{x}-1)}}} now, we know that lim x 1 sin ( x 2 1 ) x 2 1 = 1 , \lim_{x\rightarrow 1}\frac{\sin(x^2-1)}{x^2-1}=1, the other one needs a little bit of extra work lim x 1 1 1 1 + 1 sin ( x 2 1 ) x ( x 1 ) x + 1 x + 1 \lim_{x\rightarrow 1}\frac{1}{\frac{1}{1}+\frac{1}{\frac{\sin(x^2-1)}{\sqrt{x}(\sqrt{x}-1)} \frac{\sqrt{x}+1}{\sqrt{x}+1} }} lim x 1 1 1 + 1 sin ( x 2 1 ) ( x + 1 ) x ( x 1 ) x + 1 x + 1 \lim_{x\rightarrow 1}\frac{1}{1+\frac{1}{\frac{\sin(x^2-1)(\sqrt{x}+1)}{\sqrt{x}(x-1)} \frac{x+1}{x+1}}}

lim x 1 1 1 + 1 sin ( x 2 1 ) ( x + 1 ) ( x + 1 ) x ( x 2 1 ) \lim_{x\rightarrow 1}\frac{1}{1+\frac{1}{\frac{\sin(x^2-1)(\sqrt{x}+1)(x+1)}{\sqrt{x}(x^2-1)}}} we can apply the same limit as before lim x 1 1 1 + 1 ( x + 1 ) ( x + 1 ) x \lim_{x\rightarrow 1}\frac{1}{1+\frac{1}{\frac{(\sqrt{x}+1)(x+1)}{\sqrt{x}}}} now we can take the limit 1 1 + 1 4 = 4 5 , \frac{1}{1+\frac{1}{4}}=\frac{4}{5}, so the answer is 4 + 5 = 9 4+5=9

Armain Labeeb
Jul 10, 2016

lim x 1 ( sin ( x 2 1 ) x 2 + x x 1 ) = lim x 1 ( sin ( 1 x 2 ) x 2 + x x 1 ) = lim x 1 ( sin ( 1 x 2 ) x 2 + x x 1 ) lim x a [ c f ( x ) ] = c lim x a f ( x ) A p p l y i n g L H o p i t a l s R u l e : = lim x 1 ( 2 x cos ( x 2 + 1 ) 2 x 1 2 x + 1 ) = lim x 1 ( 4 x 3 2 cos ( 1 x 2 ) 4 x 3 2 + 2 x 1 ) P l u g i n v a l u e s = 4 1 3 2 cos ( 1 1 2 ) 4 1 3 2 + 2 1 1 a b = 4 5 a + b = 4 + 5 = 9 \begin{aligned} \lim _{ x\to \: 1 } \left( \frac { \sin \left( x^{ 2 }-1 \right) }{ x^{ 2 }+x-\sqrt { x } -1 } \right) & =\lim _{ x\to \: 1 } \left( -\frac { \sin \left( 1-x^{ 2 } \right) }{ x^{ 2 }+x-\sqrt { x } -1 } \right) & \\ & =-\lim _{ x\to \: 1 } \left( \frac { \sin \left( 1-x^{ 2 } \right) }{ x^{ 2 }+x-\sqrt { x } -1 } \right) & \color{grey}{ \lim _{ x\to a } \left[ c\cdot f\left( x \right) \right] =c\cdot \lim _{ x\to a } f\left( x \right) } \\ Applying\, \, \, L'Hopital's\, \, \, Rule: & =-\lim _{ x\to \: 1 } \left( \frac { -2x\cos \left( -x^{ 2 }+1 \right) }{ 2x-\frac { 1 }{ 2\sqrt { x } } +1 } \right) & \\ & =-\lim _{ x\to \: 1 } \left( \frac { -4x^{ \frac { 3 }{ 2 } }\cos \left( 1-x^{ 2 } \right) }{ 4x^{ \frac { 3 }{ 2 } }+2\sqrt { x } -1 } \right) & \\ Plug\, \, \, in\, \, \, values & =-\frac { -4\cdot \: 1^{ \frac { 3 }{ 2 } }\cos \left( 1-1^{ 2 } \right) }{ 4\cdot \: 1^{ \frac { 3 }{ 2 } }+2\cdot \sqrt { 1 } -1 } & \\ \therefore \frac { a }{ b } & =\frac { 4 }{ 5 } \\ \Longrightarrow a+b & =4+5 & \\ & =\boxed{9} & \end{aligned}

Noel Lo
Nov 29, 2015

Applying L'Hopital's rule, lim x 1 sin ( x 2 1 ) x 2 + x x 1 = lim x 1 2 x cos ( x 2 1 ) 2 x + 1 1 2 x = 2 2 + 1 1 2 = 2 3 1 2 = 4 6 1 = 4 5 . \lim_{x\rightarrow1} \frac{\sin (x^2-1)}{x^2+x-\sqrt{x}-1} =\lim_{x\rightarrow1} \frac{2x\cos (x^2-1)}{2x+1-\frac{1}{2\sqrt{x}}}=\frac{2}{2+1-\frac{1}{2}}=\frac{2}{3-\frac{1}{2}}= \frac{4}{6-1}=\frac{4}{5}.

So a=4 and b=5. a + b = 9 a+b=\boxed{9}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...