Know Your Limits

Calculus Level 4

lim n 2 n 2 2 + 2 + + 2 n 1 roots = ? \large \lim _{ n\rightarrow \infty }{ { 2 }^{ n }\underbrace { \sqrt { 2-\sqrt { 2+\sqrt { 2+\dots +\sqrt { 2 } } } } }_{ n-1 ~~ \text{roots}} } = \ ?

π \pi 2 2 e e 4 4

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

We know that 2 cos ( π 4 ) = 2 2\cos\left(\dfrac{\pi}{4}\right)=\sqrt{2} , and using repeatedly the identity 2 cos ( θ 2 ) = 2 + 2 cos ( θ ) 2\cos\left(\dfrac{\theta}{2}\right)=\sqrt{2+2\cos(\theta)} , we have 2 cos ( π 8 ) = 2 + 2 2\cos\left(\dfrac{\pi}{8}\right)=\sqrt{2+\sqrt{2}} , 2 cos ( π 16 ) = 2 + 2 + 2 2\cos\left(\dfrac{\pi}{16}\right)=\sqrt{2+\sqrt{2+\sqrt{2}}} , and in general, 2 cos ( π 2 n ) = 2 + 2 + n 1 roots 2\cos\left(\dfrac{\pi}{2^n}\right)=\underbrace{\sqrt{2+\sqrt{2+\cdots}}}_{n-1 ~~ \text{roots}} .

Then, L = 2 n 2 2 + 2 + n roots = 2 n 2 2 + 2 + n 1 roots = 2 n 2 2 cos ( π 2 n ) = 2 n 2 sin ( π 2 n + 1 ) = 2 n + 1 sin ( π 2 n + 1 ) L=2^n \underbrace{\sqrt{2-\sqrt{2+\sqrt{2+\cdots}}}}_{n ~~ \text{roots}}=2^n \sqrt{2-\underbrace{\sqrt{2+\sqrt{2+\cdots}}}_{n-1 ~~ \text{roots}}}=2^n \sqrt{2-2\cos\left(\dfrac{\pi}{2^n}\right)}=2^n \cdot 2\sin\left(\dfrac{\pi}{2^{n+1}}\right)=2^{n+1}\sin\left(\dfrac{\pi}{2^{n+1}}\right) .

Finally, lim n L = π \displaystyle \lim_{n \to \infty} L = \boxed{\pi} .

Shivam Goyal
May 18, 2017

Put root2 = 2cospi/4.

Can anybody please post the solution.

Ayushman Chahar - 4 years ago

Yaaa i neeed tooo

Biswajit Barik - 3 years, 11 months ago

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...