Know Your Rules Backwards

Calculus Level 4

Evaluate: 0 π 4 e sin x ( 1 + tan x sec x ) d x \int_0^{\frac{\pi}{4}}e^{\sin x}(1+\tan x\sec x)\ dx


The answer is 1.868187713.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Jun 28, 2018

I = 0 π 4 e sin x ( 1 + tan x sec x ) d x Note that d d x e sin x sec x = cos x e sin x sec x + e sin x tan x sec x = e sin x sec x 0 π 4 = e sin x ( 1 + tan x sec x ) = 2 e 1 2 1 1.868 \begin{aligned} I & = \int_0^\frac \pi 4 e^{\sin x}(1+\tan x \sec x)\ dx & \small \color{#3D99F6} \text{Note that }\frac d{dx}e^{\sin x}\sec x = \cos xe^{\sin x}\sec x + e^{\sin x}\tan x \sec x \\ & = e^{\sin x}\sec x\ \bigg|_0^\frac \pi 4 & \small \color{#3D99F6} = e^{\sin x}(1+\tan x \sec x) \\ & = \sqrt 2 e^{\frac 1{\sqrt 2}} - 1 \\ & \approx \boxed{1.868} \end{aligned}

Raymond Chan
Jun 27, 2018

Applying Integration by Part for the following integral, we have 0 π 4 e s i n x t a n x s e c x d x = [ e s i n x s e c x ] 0 π 4 0 π 4 s e c x e s i n x c o s x d x = [ e s i n x s e c x ] 0 π 4 0 π 4 e s i n x d x \int^{\frac{\pi}{4}}_0\,e^{sin x}\,tan x\,sec x\,dx=[e^{sin x}\,sec x]^{\frac{\pi}{4}}_0-\int^{\frac{\pi}{4}}_0\,sec x\,e^{sin x}\,cos x\,dx=[e^{sin x}\,sec x]^{\frac{\pi}{4}}_0-\int^{\frac{\pi}{4}}_0\,e^{sin x}\,dx

Move all integrals to the left side, we have 0 π 4 e s i n x ( 1 + t a n x s e c x ) d x = [ e s i n x s e c x ] 0 π 4 = e 1 2 2 1 = 1.868187713 \int^{\frac{\pi}{4}}_0\,e^{sin x}(1+tan x\,sec x)\,dx=[e^{sin x}\,sec x]^{\frac{\pi}{4}}_0=e^{\frac{1}{\sqrt{2}}}\sqrt{2}-1=\boxed{1.868187713}

Jam M
Aug 24, 2018

I = 0 π / 4 e sin x ( 1 + tan x sec x ) d x = 0 π / 4 e sin x d x + 0 π / 4 e sin x tan x sec x d x = 0 π / 4 e sin x d x + sec x e sin x 0 π / 4 0 π / 4 e sin x d x = 2 e 2 / 2 1 1.868 \begin{aligned} I &= \displaystyle \int_0^{\pi/4} e^{\sin x} (1 + \tan x \sec x)\, dx \\ \\ &= \displaystyle \int_0^{\pi/4} e^{\sin x}\, dx + \displaystyle \int_0^{\pi/4} e^{\sin x} \tan x \sec x\, dx \\ \\ &= \displaystyle \int_0^{\pi/4} e^{\sin x}\, dx + \sec x e^{\sin x} |_0^{\pi/4} - \displaystyle \int_0^{\pi/4} e^{\sin x}\, dx \\ \\ &= \sqrt{2}e^{\sqrt{2}/2} - 1 \\ \\ &\approx 1.868 \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...