Gamma Function Confusion

Calculus Level 3

{ f ( x ) = 0 ( t x + 1 + t x ) e t d t g ( x ) = 0 ( t x + 1 t x ) e t d t h ( x ) = f ( x ) × f ( x 1 ) × f ( x 2 ) × × f ( 1 ) g ( x ) × g ( x 1 ) × g ( x 2 ) × × g ( 1 ) \begin{cases} f(x) = \displaystyle \int_0^{\infty} \left( t^{x+1} + t^{x} \right) e^{-t} \ dt \\ g(x)= \displaystyle \int_0^{\infty} \left( t^{x+1} - t^{x} \right) e^{-t} \ dt \\ h(x) = \dfrac{f(x) \times f(x-1) \times f(x-2) \times \cdots \times f(1)}{g(x) \times g(x-1) \times g(x-2) \times \cdots \times g(1)}\end{cases}

Define f ( x ) f(x) , g ( x ) g(x) and h ( x ) h(x) as above, then 2 h ( x ) 2h(x) can be expressed as a polynomial for integral x x , which satisfy x > 2 x > 2 . Enter the sum of the coefficients of this polynomial (including the constant term) to 2 decimal places.

Hint: Try to rephrase this in terms of the gamma function.

If you do not know how to solve this view this wiki .


The answer is 6.00.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Nov 30, 2017

Relevant wiki: Gamma function & Factorial

Note that gamma function is defined as Γ ( s ) = 0 t s 1 e t d t \Gamma (s) = \displaystyle \int_0^\infty t^{s-1}e^{-t} dt . Therefore, we have:

f ( x ) = 0 ( t x + 1 + t x ) e t d t = Γ ( x + 2 ) + Γ ( x + 1 ) = ( x + 1 ) Γ ( x + 1 ) + Γ ( x + 1 ) = ( x + 2 ) Γ ( x + 1 ) g ( x ) = 0 ( t x + 1 t x ) e t d t = Γ ( x + 2 ) Γ ( x + 1 ) = ( x + 1 ) Γ ( x + 1 ) Γ ( x + 1 ) = x Γ ( x + 1 ) f ( x ) g ( x ) = ( x + 2 ) Γ ( x + 1 ) x Γ ( x + 1 ) = x + 2 x h ( x ) = f ( x ) f ( x 1 ) f ( x 2 ) f ( 1 ) g ( x ) g ( x 1 ) g ( x 2 ) g ( 1 ) = ( x + 2 ) ( x + 1 ) ( x ) ( 3 ) x ( x 1 ) ( x 2 ) ( 1 ) = ( x + 2 ) ! 2 x ! 2 h ( x ) = ( x + 2 ) ! x ! = ( x + 2 ) ( x + 1 ) = x 2 + 3 x + 2 \begin{aligned} f(x) & = \int_0^\infty \left(t^{x+1}+t^x \right) e^{-t} dt = \Gamma (x+2) + \Gamma (x+1) = (x+1)\Gamma(x+1) + \Gamma(x+1) = (x+2)\Gamma(x+1) \\ g(x) & = \int_0^\infty \left(t^{x+1}-t^x \right) e^{-t} dt = \Gamma (x+2) - \Gamma (x+1) = (x+1)\Gamma(x+1) - \Gamma(x+1) = x\Gamma(x+1) \\ \implies \frac {f(x)}{g(x)} & = \frac {(x+2)\Gamma(x+1)}{x\Gamma(x+1)} = \frac {x+2}x \\ h(x) & = \frac {f(x)f(x-1)f(x-2)\cdots f(1)}{g(x)g(x-1)g(x-2)\cdots g(1)} \\ & = \frac {(x+2)(x+1)(x)\cdots (3)}{x(x-1)(x-2)\cdots (1)} \\ & = \frac {(x+2)!}{2x!} \\ \implies 2h(x) & = \frac {(x+2)!}{x!} = (x+2)(x+1) = x^2 + 3x + 2 \end{aligned}

Therefore, the sum of coefficients of the polynomial is 1 + 3 + 2 = 6.00 1+3+2 = \boxed{6.00}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...