Knowing about Cubic Polynomial

Algebra Level 4

A cubic polynomial p ( x ) p(x) is such that p ( 1 ) = 1 p(1)=1 , p ( 2 ) = 2 p(2)=2 , p ( 3 ) = 3 p(3)=3 and p ( 4 ) = 5 p(4)=5 . Then the value of p ( 6 ) p(6) is:


The answer is 16.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Rama Devi
Jul 27, 2015

Let p ( x ) = a x 3 + b x 2 + c x + d . {p(x)} = ax^3+bx^2+cx+d.

We know that ,

p ( 1 ) = a + b + c + d = 1 {p(1) = a + b + c + d =1} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 .............................. \boxed{1}

p ( 2 ) = 8 a + 4 b + 2 c + d = 2 {p(2) = 8a + 4b + 2c + d = 2} . . . . . . . . . . . . . . . . . . . . . . . . . . 2 .......................... \boxed{2}

p ( 3 ) = 27 a + 9 b + 3 c + d = 3 {p(3) = 27a + 9b + 3c + d = 3} . . . . . . . . . . . . . . . . . . . . . . . . . 3 ......................... \boxed{3}

p ( 4 ) = 64 a + 16 b + 4 c + d = 5 {p(4) = 64a + 16b + 4c + d = 5} . . . . . . . . . . . . . . . . . . . . . . . . 4 ........................ \boxed{4} .

By solving these four equations , we get the following values :

a = 1 6 , b = 1 , c = 17 6 , d = 1 a = \dfrac{1}{6} , b = -1 , c = \dfrac{17}{6} , d = -1

Therefore p ( x ) = x 3 6 x 2 + 17 x 6 1. {p(x)} = \dfrac{x^3}{6} - x^2 + \dfrac{17x}{6} - 1.

By plugging in 6, we get ,

p ( 6 ) = 216 6 36 + 17 1 = 36 36 + 17 1 = 16. {p(6)} = \dfrac{216}{6} - 36 + 17 - 1 = 36 - 36 + 17 - 1 = 16.

Therefore the required answer is 16. 16.

Good solution

Sai Ram - 5 years, 10 months ago

The answer is 16 not 6 mam

Gogul Raman Thirunathan - 5 years, 10 months ago

Log in to reply

Thanks ,I updated the answer.Why don't you up vote then ?

Rama Devi - 5 years, 10 months ago

Typing mistake

Gogul Raman Thirunathan - 5 years, 10 months ago

For x = 1 , 2 , 3 x=1,2,3 we see that p ( x ) = x p(x)=x , hence p ( x ) = a ( x 1 ) ( x 2 ) ( x 3 ) + x p(x)=a(x-1)(x-2)(x-3)+x for some constant a a . Also, we are given the value of p ( 4 ) p(4) , so, by letting x = 4 x=4 : 5 = a ( 4 1 ) ( 4 2 ) ( 4 3 ) + 4 a = 1 6 5=a(4-1)(4-2)(4-3)+4 \implies a=\dfrac{1}{6} . So, p ( x ) = 1 6 ( x 1 ) ( x 2 ) ( x 3 ) + x p(x)=\dfrac{1}{6}(x-1)(x-2)(x-3)+x . Finally, let x = 6 x=6 : p ( 6 ) = 1 6 ( 6 1 ) ( 6 2 ) ( 6 3 ) + 6 = 16 p(6)=\dfrac{1}{6}(6-1)(6-2)(6-3)+6=\boxed{16} .

Nice observation

Dev Sharma - 5 years, 7 months ago
Akshat Sharda
Oct 3, 2015

By Lagrange Interpolation formula ,

P ( x ) = 1 × 1 6 ( x 2 ) ( x 3 ) ( x 4 ) + 2 × 1 2 ( x 1 ) ( x 3 ) ( x 4 ) + 3 × 1 2 ( x 1 ) ( x 2 ) ( x 4 ) + 5 × 1 6 ( x 1 ) ( x 2 ) ( x 3 ) P(x)=1×-\frac{1}{6}(x-2)(x-3)(x-4)+2×\frac{1}{2}(x-1)(x-3)(x-4)+3×-\frac{1}{2}(x-1)(x-2)(x-4)+5×\frac{1}{6}(x-1)(x-2)(x-3)

Plugging the value of x 6 x\rightarrow 6 ,

P ( 6 ) = 16 P(6)=16

WoW! I learn something new today! THANKYOU

Pi Han Goh - 5 years, 6 months ago

Log in to reply

No worries !

Akshat Sharda - 5 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...