A cubic polynomial p ( x ) is such that p ( 1 ) = 1 , p ( 2 ) = 2 , p ( 3 ) = 3 and p ( 4 ) = 5 . Then the value of p ( 6 ) is:
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Good solution
The answer is 16 not 6 mam
Log in to reply
Thanks ,I updated the answer.Why don't you up vote then ?
Typing mistake
For x = 1 , 2 , 3 we see that p ( x ) = x , hence p ( x ) = a ( x − 1 ) ( x − 2 ) ( x − 3 ) + x for some constant a . Also, we are given the value of p ( 4 ) , so, by letting x = 4 : 5 = a ( 4 − 1 ) ( 4 − 2 ) ( 4 − 3 ) + 4 ⟹ a = 6 1 . So, p ( x ) = 6 1 ( x − 1 ) ( x − 2 ) ( x − 3 ) + x . Finally, let x = 6 : p ( 6 ) = 6 1 ( 6 − 1 ) ( 6 − 2 ) ( 6 − 3 ) + 6 = 1 6 .
Nice observation
By Lagrange Interpolation formula ,
P ( x ) = 1 × − 6 1 ( x − 2 ) ( x − 3 ) ( x − 4 ) + 2 × 2 1 ( x − 1 ) ( x − 3 ) ( x − 4 ) + 3 × − 2 1 ( x − 1 ) ( x − 2 ) ( x − 4 ) + 5 × 6 1 ( x − 1 ) ( x − 2 ) ( x − 3 )
Plugging the value of x → 6 ,
P ( 6 ) = 1 6
WoW! I learn something new today! THANKYOU
Problem Loading...
Note Loading...
Set Loading...
Let p ( x ) = a x 3 + b x 2 + c x + d .
We know that ,
p ( 1 ) = a + b + c + d = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
p ( 2 ) = 8 a + 4 b + 2 c + d = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 2
p ( 3 ) = 2 7 a + 9 b + 3 c + d = 3 . . . . . . . . . . . . . . . . . . . . . . . . . 3
p ( 4 ) = 6 4 a + 1 6 b + 4 c + d = 5 . . . . . . . . . . . . . . . . . . . . . . . . 4 .
By solving these four equations , we get the following values :
a = 6 1 , b = − 1 , c = 6 1 7 , d = − 1
Therefore p ( x ) = 6 x 3 − x 2 + 6 1 7 x − 1 .
By plugging in 6, we get ,
p ( 6 ) = 6 2 1 6 − 3 6 + 1 7 − 1 = 3 6 − 3 6 + 1 7 − 1 = 1 6 .
Therefore the required answer is 1 6 .