Knowing Limits

Calculus Level pending

A function f ( x ) = A x 3 + B x 2 + C x + D x 2 + x 2 f(x)=\frac{Ax^3+Bx^2+Cx+D}{x^2+x-2} satisfies both lim x 1 f ( x ) = 2 \displaystyle \lim_{x \to 1} f(x)=2 and lim x f ( x ) = 1 \displaystyle \lim_{x \to \infty} f(x)=1 . What is the value of f ( 4 ) ? f(4)?

5 2 \frac{5}{2} 1 2 \frac{1}{2} 3 2 \frac{3}{2} 7 2 \frac{7}{2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tom Engelsman
Nov 21, 2020

If lim x f ( x ) = 1 , \lim_{x \rightarrow \infty} f(x) = 1, then we require A = 0 , B = 1. A = 0, B = 1. This now leaves us to figure out C C and D D , and if lim x 1 f ( x ) = 2 \lim_{x \rightarrow 1} f(x) = 2 then we have:

1 + C + D 1 + 1 2 = 1 + C + D 0 1 + C + D = 0 \frac{1 + C + D}{1+1-2} = \frac{1+C+D}{0} \Rightarrow 1+C+D = 0

and by L'Hopital's Rule: 2 x + C 2 x + 1 2 + C 3 = 2 C = 4 D = 5. \frac{2x +C}{2x+1} \rightarrow \frac{2+C}{3} = 2 \Rightarrow C = 4 \Rightarrow D = -5.

Thus, f ( x ) = x 2 + 4 x 5 x 2 + x 2 = ( x + 5 ) ( x 1 ) ( x + 2 ) ( x 1 ) = x + 5 x + 2 f(x) = \frac{x^2+4x-5}{x^2+x-2} = \frac{(x+5)(x-1)}{(x+2)(x-1)} = \frac{x+5}{x+2} , and f ( 4 ) = 3 2 . f(4) = \boxed{\frac{3}{2}}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...