Knowing your x , y , z x, y, z

Algebra Level 3

Given:

{ x + 1 y = 5 y + 1 z = 12 z + 1 x = 13 \begin{cases} x+\dfrac{1}{y}=5 \\ y+\dfrac{1}{z}=12 \\ z+\dfrac{1}{x}=13 \end{cases}

then what is the value of x y z + 1 x y z ? \large xyz+\frac{1}{xyz}?


The answer is 750.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

David Vreken
Nov 10, 2018

5 12 13 = ( x + 1 y ) ( y + 1 z ) ( z + 1 x ) 5 \cdot 12 \cdot 13 = (x + \frac{1}{y})(y + \frac{1}{z})(z + \frac{1}{x})

5 12 13 = x y z + x + y + z + 1 x + 1 y + 1 z + 1 x y z 5 \cdot 12 \cdot 13 = xyz + x + y + z + \frac{1}{x} + \frac{1}{y} + \frac{1}{z} + \frac{1}{xyz}

5 12 13 = x y z + 1 x y z + ( x + 1 y ) + ( y + 1 z ) + ( z + 1 x ) 5 \cdot 12 \cdot 13 = xyz + \frac{1}{xyz} + (x + \frac{1}{y}) + (y + \frac{1}{z}) + (z + \frac{1}{x})

5 12 13 = x y z + 1 x y z + 5 + 12 + 13 5 \cdot 12 \cdot 13 = xyz + \frac{1}{xyz} + 5 + 12 + 13

x y z + 1 x y z = 5 12 13 ( 5 + 12 + 13 ) xyz + \frac{1}{xyz} = 5 \cdot 12 \cdot 13 - (5 + 12 + 13)

x y z + 1 x y z = 750 xyz + \frac{1}{xyz} = \boxed{750}

Thank you, nice solution.

Hana Wehbi - 2 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...