Koch Tessellation Similarity

Geometry Level 2

If a tan snowflake has area T T , and a dark green snowflake has area G G , what is T G \frac{T}{G} ?

4 3 5 2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Zandra Vinegar Staff
Oct 12, 2015

Consider enveloping the two snowflakes each in a hexagon that connects the 6 primary snowflake tips. By similarity, the snowflakes fill the same % of each hexagon, therefore we simply need to find the ratio between the side lengths of the hexagons.

The bright green triangle is a 30-60-90 triangle. Therefore, the 1D ratio between the widths of the small snowflake and the large is 1: 3 \sqrt{3} . Therefore the ratio of their areas is ( 3 ) 2 = 3 (\sqrt{3})^2 = 3 .

Interestingly, this problem shows us a characteristic of fractals. If we try just to use the fractal's perimeter, without putting a hexagon around it, we will get strange results. Here's what happens: when a polygon is scaled by a factor k, its area is multiplied by k^2. If we are talking about volumes, a solid's volume would be multiplied by k^3. This works like this because we are working on a 2D (k^2) or 3D (k^3) world. With fractals, however, the relation between their perimeters and areas is not that straight forward. We could argue that since each green snowflake is surrounded by 3 tan snowflakes and each tan snowflake is surrounded by 6 green snowflakes, the perimeter of a tan snowflake is 6*(1/3)=2 times bigger than that of a green snowflake, but that is not the case. In fact, the relation between perimeter and area is defined not on a 2D world or a 3D world, but using a number called the "fractal dimension".

More information about this:

https://en.wikipedia.org/wiki/Coastline paradox https://en.wikipedia.org/wiki/Fractal dimension

Sorry.. i couldn't understand your solution.

Millon Das - 5 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...