Konverge III

Calculus Level 3

n = 0 ( n ! ) k ( n k ) ! x n \displaystyle \sum_{n=0}^{\infty} \dfrac{(n!)^k}{(nk)!} x^n

For positive integer values of k k , what is the radius of convergence of the function above?

k ! k! k k k 2 k^2 k k k^k

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let a n = ( n ! ) k ( n k ) ! x n a_n = \dfrac{(n!)^k}{(nk)!} x^n . The Ratio Test shows us that the series will converge if lim n a n + 1 a n = lim n ( n + 1 ) ! k x n + 1 ( n k + k ) ! ( n ! ) k x n ( n k ) ! = lim n ( n + 1 ) k ( k n + 1 ) ( k n + 2 ) ( ) ( k n + k ) x < 1 \lim_{n \to \infty} \left | \dfrac{a_{n+1}}{a_n} \right | = \lim_{n \to \infty} \left | \dfrac{\dfrac{(n+1)!^k x^{n+1}}{(nk+k)!}}{\dfrac{(n!)^k x^n}{(nk)!}} \right | = \lim_{n \to \infty} \left | \dfrac{(n+1)^k}{(kn+1)(kn+2)(\cdots)(kn+k)} \cdot x \right | < 1 \Leftrightarrow lim n n k ( 1 + 1 n ) k x n k ( k + 1 n ) ( k + 2 n ) ( ) ( k + k n ) = lim n ( 1 + 1 n ) k x k ( 1 + 1 k n ) k ( 1 + 2 k n ) ( ) k ( 1 + 1 n ) < 1 \Leftrightarrow \lim_{n \to \infty} \dfrac{n^k \cdot \left (1+\frac{1}{n} \right )^k \cdot \left |x \right | }{n^k \cdot \left (k+\frac{1}{n} \right ) \cdot \left (k+\frac{2}{n} \right ) \cdot (\cdots) \cdot \left (k+\frac{k}{n} \right )} = \lim_{n \to \infty} \dfrac{\left (1+\frac{1}{n} \right )^k \cdot \left |x \right | }{k \cdot \left (1+\frac{1}{kn} \right ) \cdot k \left (1+\frac{2}{kn} \right ) \cdot (\cdots) \cdot k \left (1+\frac{1}{n} \right )} < 1 \Leftrightarrow lim n ( 1 k k x ( 1 + 1 n ) k ( 1 + 1 k n ) ( 1 + 2 k n ) ( ) ( 1 + 1 n ) ) = 1 k k x lim n ( ( 1 + 1 n ) k ( 1 + 1 k n ) ( 1 + 2 k n ) ( ) ( 1 + 1 n ) ) < 1 \Leftrightarrow \lim_{n \to \infty} \left ( \dfrac{1}{k^k} \cdot \left |x \right | \cdot \dfrac{\left (1+\frac{1}{n} \right )^k}{\left (1+\frac{1}{kn} \right ) \left (1+\frac{2}{kn} \right ) (\cdots) \left (1+\frac{1}{n} \right )} \right ) = \dfrac{1}{k^k} \cdot \left |x \right | \cdot \lim_{n \to \infty} \left ( \dfrac{\left (1+\frac{1}{n} \right )^k}{\left (1+\frac{1}{kn} \right ) \left (1+\frac{2}{kn} \right ) (\cdots) \left (1+\frac{1}{n} \right )} \right ) < 1 \Leftrightarrow x k k < 1 x < k k . \Leftrightarrow \dfrac{\left |x \right |}{k^k} < 1 \Leftrightarrow \boxed{\left |x \right | < k^k.}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...