K.T.O.G

N N molecules each of mass m m of gas A and 2 N 2N molecules each of mass 2 m 2m of gas B are contained in the same vessel which is maintained at temperature T T . The mean square of the velocity of molecules of B B type is denoted by ( V R M S B ) 2 { ({ V }_{ RMS-B } })^{ 2 } and the mean square of x-component of the velocity of A A type is denoted by ( V R M S X A ) 2 { ({ V }_{ RMS-X-A } })^{ 2 } . Find the value of ( V R M S X A ) 2 ( V R M S B ) 2 . \frac { { ({ V }_{ RMS-X-A }) }^{ 2 } }{ { ({ V }_{ RMS-B }) }^{ 2 } }.

3 2 \frac { 3 }{ 2 } 2 3 \frac { 2 }{ 3 } 4 3 \frac { 4 }{ 3 } None of these choices

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Jaswinder Singh
Feb 22, 2016

for gas B ( V R M S B ) 2 = 3 k T 2 m { ( }{ V }_{ RMS-B })^{ 2 }=\frac { 3kT }{ 2m } for gas A ( V R M S X A ) 2 = ( V R M S Y A ) 2 = ( V R M S Z A ) 2 { ({ V }_{ RMS-X-A }) }^{ 2 }={ ({ V }_{ RMS-Y-A }) }^{ 2 }={ ({ V }_{ RMS-Z-A }) }^{ 2 } ( V R M S X A ) 2 = ( V R M S A ) 2 3 = 1 3 × 3 k T m = k T m { ({ V }_{ RMS-X-A }) }^{ 2 }=\frac { { ({ V }_{ RMS-A }) }^{ 2 } }{ 3 } =\frac { 1 }{ 3 } \times \frac { 3kT }{ m } =\frac { kT }{ m } ( V R M S X A ) 2 ( V R M S B ) 2 = k T / m 3 k T / 2 m = 2 3 \frac { { ({ V }_{ RMS-X-A }) }^{ 2 } }{ { ({ V }_{ RMS-B }) }^{ 2 } } =\frac { kT/m }{ 3kT/2m } =\frac { 2 }{ 3 }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...