KVPY #17

Find the remainder when 3 2 32 32 32^{{32} ^{32}} is divided by 9.


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

3 2 3 2 32 3 2 3 2 32 mod ϕ ( 9 ) (mod 9) Since gcd ( 32 , 9 ) = 1 , Euler’s theorem applies. 3 2 3 2 32 mod 6 (mod 9) Euler’s totient function ϕ ( 9 ) = 6 3 2 ( 30 + 2 ) 32 mod 6 (mod 9) 3 2 2 32 mod 6 (mod 9) 3 2 2 5 × 6 + 2 mod 6 (mod 9) 3 2 3 2 6 × 2 2 mod 6 (mod 9) 3 2 2 6 × 2 2 mod 6 (mod 9) 3 2 32 × 2 3 mod 6 (mod 9) 3 2 2 4 mod 6 (mod 9) 3 2 4 (mod 9) ( 36 4 ) 4 (mod 9) 4 4 (mod 9) 1 6 2 (mod 9) ( 18 2 ) 2 (mod 9) 4 (mod 9) \begin{aligned} 32^{32^{32}} & \equiv 32^{\color{#3D99F6}32^{32} \text{ mod }\phi(9)} \text{ (mod 9)} & \small \color{#3D99F6} \text{Since } \gcd(32, 9) = 1 \text{, Euler's theorem applies.} \\ & \equiv 32^{\color{#3D99F6}32^{32} \text{ mod }6} \text{ (mod 9)} & \small \color{#3D99F6} \text{Euler's totient function }\phi(9) = 6 \\ & \equiv 32^{(30+2)^{32} \text{ mod }6} \text{ (mod 9)} \\ & \equiv 32^{2^{32} \text{ mod }6} \text{ (mod 9)} \\ & \equiv 32^{2^{5\times 6 + 2} \text{ mod }6} \text{ (mod 9)} \\ & \equiv 32^{32^6\times 2^2 \text{ mod }6} \text{ (mod 9)} \\ & \equiv 32^{2^6\times 2^2 \text{ mod }6} \text{ (mod 9)} \\ & \equiv 32^{32\times 2^3 \text{ mod }6} \text{ (mod 9)} \\ & \equiv 32^{2^4 \text{ mod }6} \text{ (mod 9)} \\ & \equiv 32^4 \text{ (mod 9)} \\ & \equiv (36-4)^4 \text{ (mod 9)} \\ & \equiv 4^4 \text{ (mod 9)} \\ & \equiv 16^2 \text{ (mod 9)} \\ & \equiv (18-2)^2 \text{ (mod 9)} \\ & \equiv \boxed{4} \text{ (mod 9)} \end{aligned}

Thank you very much sir. (+1)

Rahil Sehgal - 4 years, 2 months ago
Tomás Carvalho
Apr 13, 2017

3 2 3 2 32 32^{32^{32}} = 3 2 2 5 32 = 32^{2^{5*32}} . We know 2 1 ( m o d 3 ) 2 \equiv -1 \pmod 3 , therefore, 2 32 5 ( 1 ) 32 5 1 ( m o d 3 ) 2^{32*5} \equiv (-1)^{32*5} \equiv 1 \pmod 3 . So, let 2 5 32 1 = 3 k 2^{5*32} - 1 = 3k , where k k is an odd positive number. 3 2 2 5 32 = 3 2 3 k 32 ( 2 3 ) 5 k ( 4 ) ( 1 ) 5 k ( 4 ) ( 1 ) . ( 4 ) 4 ( m o d 9 ) 32^{2^{5*32}} = 32^{3k} * 32 \equiv (2^{3})^{5k} * (-4) \equiv (-1)^{5k} * (-4) \equiv (-1).(-4) \equiv \boxed {4} \pmod 9

Ashwin K
Apr 17, 2017

We know that remainder when 2^3(8) divided by 9 is -1.

So, remainder when 2^4 divided by 9 is -2.

Extending this logic we can say remainder when 32 divided by 9 as 4, since powers are even.

Let us see inner powers----> 4^32---->2^64---->(2^3)^21*2---->-2(outer power is 32).

Let us see outer power---->2^32---->(2^3)^10*4---->4

So, our answer is 4.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...