KVPY #20

Calculus Level 4

If I n = 0 π / 4 tan n x d x I_{n} = \displaystyle\int_{0}^{π/4} \tan^{n} x \ dx , then 1 I 2 + I 4 \dfrac{1}{I_{2} + I_{4}} , 1 I 3 + I 5 \dfrac{1}{I_{3} + I_{5}} , 1 I 4 + I 6 \dfrac{1}{I_{4} + I_{6}} follows a/an __________ \text{\_\_\_\_\_\_\_\_\_\_} in that order.


For more KVPY practice questions try my set
harmonic progression None of these choices geometric progression arithmetic progression

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Apr 12, 2017

I n = 0 π 4 tan n x d x Let t = tan x , d t = sec 2 x d x = 1 + t 2 d x = 0 1 t n 1 + t 2 d t \begin{aligned} I_n & = \int_0^\frac \pi 4 \tan^n x \ dx & \small \color{#3D99F6} \text{Let }t = \tan x, \ dt = \sec^2 x \ dx = 1+t^2 \ dx \\ & = \int_0^1 \frac {t^n}{1+t^2} dt \end{aligned}

I n + I n + 2 = 0 1 t n 1 + t 2 d t + 0 1 t n + 2 1 + t 2 d t = 0 1 t n + t n + 2 1 + t 2 d t = 0 1 t n d t = 1 n + 1 \begin{aligned} \implies I_n + I_{n+2} & = \int_0^1 \frac {t^n}{1+t^2} dt + \int_0^1 \frac {t^{n+2}}{1+t^2} dt \\ & = \int_0^1 \frac {t^n+t^{n+2}}{1+t^2} dt \\ & = \int_0^1 t^n \ dt \\ & = \frac 1{n+1} \end{aligned}

1 I 2 + I 4 = 1 1 2 = 2 \implies \dfrac 1{I_2+I_4} = \frac 1{\frac 12} = 2 , 1 I 3 + I 5 = 3 \dfrac 1{I_3+I_5} = 3 , and 1 I 4 + I 6 = 4 \dfrac 1{I_4+I_6} = 4 . They are in an arithmetic progression .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...