KVPY 2015 #2

Calculus Level 4

lim x 0 ( x sin x ) 6 x 2 \large \displaystyle \lim_{x \rightarrow 0} \left( \dfrac{x}{\sin x} \right)^{\frac{6}{x^2}}


More KVPY Question

e 6 e^6 e 1 6 e^{\frac{-1}{6}} Limit dosn't exist e e e 1 e^{-1}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

lim x 0 ( x sin x ) 6 x 2 = lim x 0 ( x x x 3 3 ! + x 5 5 ! . . . ) 6 x 2 Taylor series = lim x 0 ( x x 3 6 + x 5 120 . . . x ) 6 x 2 = lim x 0 ( 1 x 2 6 ) 6 x 2 For x 0 and let y = x 2 6 = lim x 0 ( 1 + y ) 1 y = e \begin{aligned} \lim_{x \to 0} \left(\frac{x}{\color{#3D99F6}{\sin x}}\right)^{\frac{6}{x^2}} & = \lim_{x \to 0} \left(\frac{x}{\color{#3D99F6}{x - \frac{x^3}{3!}+\frac{x^5}{5!}-...}}\right)^{\frac{6}{x^2}} \quad \quad \small \color{#3D99F6}{\text{Taylor series}} \\ & = \lim_{x \to 0} \left(\frac{x - \frac{x^3}{6}+\frac{x^5}{120}-...}{x} \right)^{-\frac{6}{x^2}} \\ & = \lim_{x \to 0} \left(1 \color{#3D99F6}{- \frac{x^2}{6}}\right)^{\color{#3D99F6}{-\frac{6}{x^2}}} \quad \quad \quad \quad \quad \quad \space \small \color{#3D99F6}{\text{For }x \to 0 \text{ and let } y = - \frac{x^2}{6}} \\ & = \lim_{x \to 0} (1 {\color{#3D99F6}+y})^{\color{#3D99F6}\frac{1}{y}} = \boxed{e} \end{aligned}

Where did the rest of the terms of the expansion go in the second last step? Could u pls explain? Thnx

Ayush Garg - 5 years, 5 months ago

Log in to reply

When x 0 x \to 0 , x 3 , x 4 , x 5 . . . x^3, x^4, x^5... are much smaller than x 2 x^2 and they are dropped.

Chew-Seong Cheong - 5 years, 5 months ago

Log in to reply

Oh..I got it..thnx.

Ayush Garg - 5 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...