KVPY 2015 #3

Calculus Level 4

Let x > 0 x > 0 be a fixed real number. Then the integral 0 e t x t dt \large \displaystyle \int_0^{\infty} e^{-t} | x - t| \text{dt} is equal to


More KVPY Question

x 2 e x + 1 -x -2e^{-x} + 1 x + 2 e x + 1 x + 2e^{-x} + 1 x 2 e x + 1 x - 2e^{-x} + 1 x + 2 e x 1 x + 2e^{-x} -1 None of these

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

0 e t x t d t = 0 x e t ( x t ) d t + x e t ( t x ) d t = x ( 0 x e t d t x e t d t ) 0 x t e t d t + x t e t d t By integration by parts (see note) = x ( [ e t ] 0 x [ e t ] x ) + [ e t ( t + 1 ) ] 0 x [ e t ( t + 1 ) ] x = x ( e x + 1 + 0 e x ) + ( x + 1 ) e x 1 + 0 + ( x + 1 ) e x = x + 2 e x 1 \begin{aligned} \int_0^\infty e^{-t}|x-t|dt & = \int_0^x e^{-t}(x-t) dt + \int_x^\infty e^{-t}(t-x) dt \\ & = x \left( \int_0^x e^{-t} dt - \int_x^\infty e^{-t} dt \right) \color{#3D99F6}{- \int_0^x te^{-t} dt + \int_x^\infty te^{-t} dt} \quad \small \color{#3D99F6}{\text{By integration by parts (see note)}} \\ & = x\left(\left[-e^{-t}\right]_0^x - \left[-e^{-t}\right]_x^\infty \right) \color{#3D99F6}{+ \left[e^{-t}(t+1)\right]_0^x - \left[e^{-t}(t+1)\right]_x^\infty} \\ & = x \left(-e^{-x}+1+0-e^{-x} \right) + (x+1)e^{-x} - 1 + 0 +(x+1)e^{-x} \\ & = \boxed{x + 2e^{-x} - 1} \end{aligned}

N o t e : \color{#3D99F6}{Note:}

t e t d t = t e t + e t d t = e t ( t + 1 ) + c o n s t a n t \begin{aligned} \quad \int te^{-t}dt & = -te^{-t} + \int e^{-t}dt \\ & = -e^{-t}(t+1) + \color{grey}{constant} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...