KVPY 2015 4

Algebra Level 3

What is the largest perfect square that divides

201 4 3 201 3 3 + 201 2 3 201 1 3 + + 2 3 1 3 ? \large 2014^3 - 2013 ^3 + 2012^3 - 2011^3 + \ldots + 2^3 -1^3?

1 2 1^2 None of these 201 4 2 2014^2 100 7 2 1007^2 2 2 2^2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Let the expression be S S , then we have:

S = 1 3 + 2 3 3 3 . . . + 201 4 3 = ( 1 3 + 2 3 + 3 3 + . . . + 201 4 3 ) + 2 ( 2 3 + 4 3 + 6 3 + . . . + 201 4 3 ) = ( 1 3 + 2 3 + 3 3 + . . . + 201 4 3 ) + 2 4 ( 1 3 + 2 3 + 3 3 + . . . + 100 7 3 ) = ( 2014 ( 2014 + 1 ) 2 ) 2 + 2 4 ( 1007 ( 1007 + 1 ) 2 ) 2 = ( 1007 ˙ 2015 ) 2 + 2 2 ( 1007 ˙ 1008 ) 2 = ( 1007 ˙ 2015 ) 2 + ( 1007 ˙ 2016 ) 2 = 100 7 2 ( 2016 2015 ) ( 2016 + 2015 ) = 100 7 2 ˙ 4031 = 100 7 2 ˙ 29 ˙ 139 \begin{aligned} S & = - 1^3 + 2^3 -3^3 -...+2014^3 \\ & = - (1^3+2^3+3^3+... + 2014^3) + 2(2^3+4^3+6^3+...+2014^3) \\ & = - (1^3+2^3+3^3+... + 2014^3) + 2^4(1^3+2^3+3^3+...+1007^3) \\ & = - \left(\frac{2014(2014+1)}{2} \right)^2 + 2^4\left(\frac{1007(1007+1)}{2} \right)^2 \\ & = -(1007 \dot{} 2015)^2 + 2^2(1007 \dot{} 1008)^2 \\ & = -(1007 \dot{} 2015)^2 + (1007 \dot{} 2016)^2 \\ & = 1007^2(2016-2015)(2016+2015) \\ & = 1007^2 \dot{} 4031 \\ & = \color{#3D99F6}{1007^2} \dot{} 29 \dot{} 139 \end{aligned}

Therefore, 100 7 2 \boxed{\color{#3D99F6}{1007^2}} is the largest perfect square that divides S S .

Great solution

Ujjwal Mani Tripathi - 5 years, 7 months ago

Similar approach ... Nice solution btw !!

A Former Brilliant Member - 5 years, 6 months ago

Awesome!!!

I did it by looking how the sequence bahaves when I try to divide by some number and what I get is: if the last posite bigger number of the sequence is 2 x 2^{x} , I can divide by the perfect square of haft of it. But I couldn't prove by algebra, and yet it's not prove, but by looking to this solution, it's really interesting. A lot of things to learn about it.

I'm still a little of bit lost on the fourth part though, in how to get it. If you could explaing for me, I'd be thank you.

Marco Antonio - 5 years, 6 months ago

Log in to reply

k = 1 n k 3 = ( n ( n + 1 ) 2 ) 2 \displaystyle \sum_{k=1}^n k^3 = \left(\frac{n(n+1)}{2}\right)^2

Chew-Seong Cheong - 5 years, 6 months ago

Log in to reply

Thanks a lot!

Marco Antonio - 5 years, 6 months ago

I miss read what is required. My approach:-
L e t n = 1007. T a k i n g p a i r s o f ( 2 x ) 3 ( 2 x 1 ) 3 = 12 x 2 6 x + 1 , f ( x ) = 1 1007 ( 2 x ) 3 ( 2 x 1 ) 3 . f ( x ) = 1 n 12 x 2 6 x + 1. f ( x ) = 12 n ( n + 1 ) ( 2 n + 1 ) 6 6 n ( n + 1 2 + n = 2 n ( n + 1 ) ( 2 n + 1 ) 3 n ( n + 1 ) + n = n { ( n + 1 ) ( 4 n + 2 3 ) + 1 } = n { ( n + 1 ) ( 4 n 1 ) + 1 } = n ( 4 n 2 + 3 n ) = n 2 ( 4 n + 3 ) . 100 7 2 f ( x ) Let~~ n=1007.\\ Taking~pairs~of~(2x)^3-(2x-1)^3=12x^2-6x+1,\\ \displaystyle f(x)=\sum_1^{1007} (2x)^3-(2x-1)^3.\\ \displaystyle f(x)=\sum_1^n 12x^2-6x+1.\\ f(x)= 12\dfrac{n(n+1)(2n+1)} 6 - 6 \dfrac{n(n+1} 2+n \\ =2n(n+1)(2n+1)-3n(n+1)+n\\ =n\{(n+1)(4n+2-3)+1\}\\ =n\{(n+1)(4n-1)+1\}\\ =n*(4n^2+3n)\\ =n^2*(4n+3).\\ \Huge \color{#D61F06}{1007^2~|~f(x)} .

Niranjan Khanderia - 3 years, 2 months ago

I did it in a bad way !! Observation... 2³-1³ is div by 1² which is (2/2)² 4³-3³+2³-1³ = 44 is div by 2² which is (4/2)² 6³-5³+4³-3³+2³-1³ = 135 is div by 3² which is (6/2)² So 2014³-2013³+2012³-2011³.......2³-1³ shud be div by (2014/2)²

nice observation man!!

Rakshit Joshi - 4 years, 7 months ago
Akash Singh
Nov 4, 2015

use a^3-b^3=(a-b)(a^2+b^2+a.b)

its just a hint

So taking a look at the first part of the pattern e.g : 201 4 3 201 3 3 2014^{3}-2013^{3} we can factor out the cube to make the following ( 2014 2013 ) 3 (2014-2013)^{3} which is equal to 1 3 1^{3} repeating this pattern equal to the number of pairs by dividing 2014 by 2, we get 100 7 3 1007^{3} which is divisible by 100 7 2 1007^{2} . This is my first time to write any solution in this website so feel free to give me your feedback.

Mr Yovan
Nov 4, 2015

i dont know if it´s right but i solve like this 2014^3-2013^3...-1^3=2014^3+2012^+2^3....-(2013^3+1^3...) x^3-y^3=x+y (x^2-xy+y^2) 2012^3+2^3+2010^3+4^3....=(2012+2) . (2012^2-4024+4)... so separing in even number pair we get 1017 pair that has the sum 2014 so the count can be rewrite as: 2014.(2012^2-4024+2010^2-8040+16...) 1007. 2014.((2012^2-4024+2010^2-8040+16...) we may do the same with the pairs of odd numbers 2013^3+1^3...=1017.2014.(2013^2-2013+1...) and then 1007.2014.(2012^2-4028+2^3-2013^2-2013+1...) + 2014^3 as 2014=1007.2 1007^2. 2(2012^2-4028+2^3-2013^2-2013+1...) + 1017.2^3 as (2013^2-2013+1...) results in an odd number and (2012^2-4024+2010^2-8040+16...) results in an even number we infer that (2012^2-4028+2^3-2013^2-2013+1...) is an even number so the answer can´t be 2014^2 because there´s no order factor even

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...