KVPY 2015 7

Algebra Level 4

201 4 2014 201 5 2015 201 6 2016 201 7 2017 201 8 2018 201 9 2019 202 0 2020 202 1 2021 202 2 2022 \left| \begin{array}{ccc} 2014^{2014} & 2015^{2015} & 2016^{2016} \\ 2017^{2017} & 2018^{2018} & 2019^{2019} \\ 2020^{2020} & 2021^{2021} & 2022^{2022} \\ \end{array} \right |

The remainder when the above determinant is divided by 5 is:


More KVPY Question .
0 3 2 1 4

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Surya Prakash
Nov 8, 2015

Suppose a a , b b , c c \ldots h h and i i are integers and let a 1 a_{1} , b 1 b_{1} , c 1 c_{1} \ldots h 1 h_{1} and i 1 i_{1} be the remainders when divided p p .

Then, [ a b c d e f g h i ] m o d p a ( e i f h ) b ( d i f g ) + c ( d h e g ) m o d p a 1 ( e 1 i 1 f 1 h 1 ) b 1 ( d 1 i 1 f 1 g 1 ) + c 1 ( d 1 h 1 e 1 g 1 ) [ a 1 b 1 c 1 d 1 e 1 f 1 g 1 h 1 i 1 ] m o d p \begin{aligned} \left| \begin{bmatrix} a &b &c \\ d &e &f \\ g &h &i \end{bmatrix} \right| \mod p &\equiv a(ei-fh) - b(di-fg) + c(dh-eg) \mod p \\ &\equiv a_{1}(e_{1}i_{1}-f_{1}h_{1}) - b_{1}(d_{1}i_{1}-f_{1}g_{1}) + c_{1}(d_{1}h_{1}-e_{1}g_{1}) \\ &\equiv \left| \begin{bmatrix} a_{1} &b_{1} &c_{1} \\ d_{1} &e_{1} &f_{1} \\ g_{1} &h_{1} &i_{1} \end{bmatrix} \right| \mod p \end{aligned}

Now by modular arithmetic, 201 4 2014 1 2014^{2014} \equiv 1 ; 201 5 2015 0 2015^{2015} \equiv 0 ; 201 6 2016 1 2016^{2016} \equiv 1 ; 201 7 2017 2 2017^{2017} \equiv 2 ; 201 8 2018 1 2018^{2018} \equiv -1 ; 201 9 2019 1 2019^{2019} \equiv -1 ; 202 0 2020 0 2020^{2020} \equiv 0 ; 202 1 2021 1 2021^{2021} \equiv 1 ; 202 2 2022 1 2022^{2022} \equiv -1 m o d 5 \mod 5 .

So, [ 201 4 2014 201 5 2015 201 6 2016 201 7 2017 201 8 2018 201 9 2019 202 0 2020 202 1 2021 202 2 2022 ] m o d 5 [ 1 0 1 2 1 1 0 1 1 ] m o d 5 4 m o d 5 \begin{aligned} \left| \begin{bmatrix} 2014^{2014} &2015^{2015} &2016^{2016} \\ 2017^{2017} &2018^{2018} &2019^{2019} \\2020^{2020} &2021^{2021} &2022^{2022} \end{bmatrix} \right| \mod 5 &\equiv \left| \begin{bmatrix} 1 &0 &1 \\ 2 &-1 &-1 \\ 0 &1 &-1 \end{bmatrix} \right| \mod 5 \\ &\equiv 4 \mod 5 \end{aligned}

Moderator note:

Simple standard approach, if somewhat painful.

Sparsh Jain
Nov 4, 2015

We can simply solve this by taking end number of term and solving its determinant and then dividing by 5 2014 power - 4 6 6 6 so we take 6 2015 power - 5 5 5 5 so we take 5 2016 power - 6 6 6 6 so we take 6 2017 power - 7 9 3 1 7 so we take 9 ( Since 2017 = 5n + 2 and here 2 for us will be 9 ) Similarly 2018 power - 8 4 2 6 8 so we take 6 2019 power - so we take 1 2020 power - so we take 0 2021 power - so we take 1 2022 power - so we take 4

and then simplifying determinant we get D= 264 264/5 = 5m+ 4 So Ans = 4

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...