∣ ∣ ∣ ∣ ∣ ∣ 2 0 1 4 2 0 1 4 2 0 1 7 2 0 1 7 2 0 2 0 2 0 2 0 2 0 1 5 2 0 1 5 2 0 1 8 2 0 1 8 2 0 2 1 2 0 2 1 2 0 1 6 2 0 1 6 2 0 1 9 2 0 1 9 2 0 2 2 2 0 2 2 ∣ ∣ ∣ ∣ ∣ ∣
The remainder when the above determinant is divided by 5 is:
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Simple standard approach, if somewhat painful.
We can simply solve this by taking end number of term and solving its determinant and then dividing by 5 2014 power - 4 6 6 6 so we take 6 2015 power - 5 5 5 5 so we take 5 2016 power - 6 6 6 6 so we take 6 2017 power - 7 9 3 1 7 so we take 9 ( Since 2017 = 5n + 2 and here 2 for us will be 9 ) Similarly 2018 power - 8 4 2 6 8 so we take 6 2019 power - so we take 1 2020 power - so we take 0 2021 power - so we take 1 2022 power - so we take 4
and then simplifying determinant we get D= 264 264/5 = 5m+ 4 So Ans = 4
Problem Loading...
Note Loading...
Set Loading...
Suppose a , b , c … h and i are integers and let a 1 , b 1 , c 1 … h 1 and i 1 be the remainders when divided p .
Then, ∣ ∣ ∣ ∣ ∣ ∣ ⎣ ⎡ a d g b e h c f i ⎦ ⎤ ∣ ∣ ∣ ∣ ∣ ∣ m o d p ≡ a ( e i − f h ) − b ( d i − f g ) + c ( d h − e g ) m o d p ≡ a 1 ( e 1 i 1 − f 1 h 1 ) − b 1 ( d 1 i 1 − f 1 g 1 ) + c 1 ( d 1 h 1 − e 1 g 1 ) ≡ ∣ ∣ ∣ ∣ ∣ ∣ ⎣ ⎡ a 1 d 1 g 1 b 1 e 1 h 1 c 1 f 1 i 1 ⎦ ⎤ ∣ ∣ ∣ ∣ ∣ ∣ m o d p
Now by modular arithmetic, 2 0 1 4 2 0 1 4 ≡ 1 ; 2 0 1 5 2 0 1 5 ≡ 0 ; 2 0 1 6 2 0 1 6 ≡ 1 ; 2 0 1 7 2 0 1 7 ≡ 2 ; 2 0 1 8 2 0 1 8 ≡ − 1 ; 2 0 1 9 2 0 1 9 ≡ − 1 ; 2 0 2 0 2 0 2 0 ≡ 0 ; 2 0 2 1 2 0 2 1 ≡ 1 ; 2 0 2 2 2 0 2 2 ≡ − 1 m o d 5 .
So, ∣ ∣ ∣ ∣ ∣ ∣ ⎣ ⎡ 2 0 1 4 2 0 1 4 2 0 1 7 2 0 1 7 2 0 2 0 2 0 2 0 2 0 1 5 2 0 1 5 2 0 1 8 2 0 1 8 2 0 2 1 2 0 2 1 2 0 1 6 2 0 1 6 2 0 1 9 2 0 1 9 2 0 2 2 2 0 2 2 ⎦ ⎤ ∣ ∣ ∣ ∣ ∣ ∣ m o d 5 ≡ ∣ ∣ ∣ ∣ ∣ ∣ ⎣ ⎡ 1 2 0 0 − 1 1 1 − 1 − 1 ⎦ ⎤ ∣ ∣ ∣ ∣ ∣ ∣ m o d 5 ≡ 4 m o d 5