KVPY 2015 9

Algebra Level 3

log 3 x 1 ( x 2 ) = log 9 x 2 6 x + 1 ( 2 x 2 10 x 2 ) , x = ? \large \quad \log_{3x - 1} (x - 2) = \log_{9x^2 - 6x + 1} (2x^2 - 10x - 2) \quad , \quad x = \ ?


More KVPY Question .
None of these 2 + 5 2 + \sqrt5 3 + 15 3 + \sqrt{15} 9 15 9 - \sqrt{15} 6 5 6 - \sqrt5

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Nov 11, 2015

log 3 x 1 ( x 2 ) = log 9 x 2 6 x + 1 ( 2 x 2 10 x 2 ) log ( x 2 ) log ( 3 x 1 ) = log ( 2 x 2 10 x 2 ) log ( 9 x 2 6 x + 1 ) = log ( 2 x 2 10 x 2 ) log ( 3 x 1 ) 2 = log ( 2 x 2 10 x 2 ) 2 log ( 3 x 1 ) 2 log ( x 2 ) = log ( 2 x 2 10 x 2 ) log ( x 2 ) 2 = log ( 2 x 2 10 x 2 ) ( x 2 ) 2 = 2 x 2 10 x 2 x 2 4 x + 4 = 2 x 2 10 x 2 x 2 6 x 6 = 0 x = 6 ± 36 + 24 2 = 3 + 15 \begin{aligned} \log_{3x-1}(x-2) & = \log_{9x^2-6x+1}(2x^2-10x-2) \\ \frac{\log (x-2)}{\log (3x-1)} & = \frac{\log (2x^2-10x-2)}{\log (9x^2-6x+1)} \\ & = \frac{\log (2x^2-10x-2)}{\log (3x-1)^2} \\ & = \frac{\log (2x^2-10x-2)}{2 \log (3x-1)} \\ \Rightarrow 2 \log (x-2) & = \log (2x^2-10x-2) \\ \log (x-2)^2 & = \log (2x^2-10x-2) \\ (x-2)^2 & = 2x^2-10x-2 \\ x^2 - 4x + 4 & = 2x^2-10x-2 \\ \Rightarrow x^2 - 6x - 6 & = 0 \\ \Rightarrow x & = \frac {6 \pm \sqrt{36+24}}{2} \\ & = \boxed{3 + \sqrt{15}} \end{aligned}

The negative value of x x is rejected because log 3 x 1 ( x 2 ) \log_{3x-1}(x-2) and log 9 x 2 6 x + 1 ( 2 x 2 10 x 2 ) \log_{9x^2-6x+1}(2x^2-10x-2) are not defined.

Similarly solved

Shreyash Rai - 5 years, 7 months ago
Rohit Udaiwal
Nov 11, 2015

Great problem!

We have, log ( 3 x 1 ) ( x 2 ) = log ( 9 x 2 6 x + 1 ) ( 2 x 2 10 x 2 ) log ( 3 x 1 ) ( x 2 ) = log ( 3 x 1 ) 2 2 x 2 10 x 2 log ( 3 x 1 ) ( x 2 ) = log ( 3 x 1 ) ( 2 x 2 10 x 2 ) x 2 = 2 x 2 10 x 2 x 2 4 x + 4 = 2 x 2 10 x 2 x 2 6 x 6 = 0 \begin{aligned} \quad \log_{(3x - 1)} (x - 2) = \log_{(9x^2 - 6x + 1)} (2x^2 - 10x - 2) \\ \implies \log_{(3x-1)}{(x-2)}=\log_{(3x-1)^{2}}{2x^2-10x-2} \\ \implies \log_{(3x-1)}{(x-2)}=\log_{(3x-1)}{\sqrt{(2x^2-10x-2)}} \\ \implies x-2=\sqrt{2x^2-10x-2} \\ \implies x^2-4x+4=2x^2-10x-2 \\ \implies x^2-6x-6=0 \end{aligned} We can now use the quadratic formula. x = 6 ± 36 + 24 2 x = 6 ± 60 2 x = 3 ± 15 \implies x=\dfrac{6 \pm \sqrt{36+24}}{2} \implies x=\dfrac{6 \pm \sqrt{60}}{2} \implies x=3 \pm \sqrt{15} But 3 15 3-\sqrt{15} is negative and log 3 x 1 x 2 \log_{3x-1}{x-2} is undefined for negative x x . x = 3 + 15 \boxed{\therefore x=3+\sqrt{15}}

Can you please tell me how did you solve: x^2 - 6x - 6?

Deap Daru - 5 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...