KVPY 2016 SA Question 5

Geometry Level 3

Let P be a point inside the triangle ABC such that Angle A B C = 9 0 o \ ABC = 90^{o} . Let P 1 P_1 and P 2 P_2 are two images of P under reflection of AB and BC. Distance Between the circumcenters of traingles A B C ABC and P 1 P P 2 P_1PP_2 is

Try my set KVPY 2016 SA Questions

A P + B P + C P 3 \dfrac{AP+BP+CP}{3} B P 2 \dfrac{BP}{2} A B 2 \dfrac{AB}{2} A P 2 \dfrac{AP}{2} A C 2 \dfrac{AC}{2} B C 2 \dfrac{BC}{2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Clearly P 1 P 2 P_1 P_2 is passing through the origin (obtain the equation for line P 1 P 2 P_1 P_2 from its coordinates and you will find that the line is of the form y = m x y=mx ), then clearly the required distance is M B MB .

We know that when a right angled triangle is circumscribed by a circle, it's hypotenuse is the diameter of the circle.

Then, M B = A M = M C = A C 2 MB = AM =MC = \boxed{\frac{AC}{2}}

S i n c e P 1 i s r e f l e c t i o n o f P o n B A , B A i s b i s e c t o r o f P 1 P . S i n c e P 2 i s r e f l e c t i o n o f P o n B C , B C i s b i s e c t o r o f P 2 P . B u t s i n c e a c i r c l e p a s s e s t h r o u g h t h r e e p o i n t s , P , P 1 , P 2 , a n d P P 1 i s B A , P P 2 , B C , Δ P P 1 P 2 i s a r i g h t Δ , a t P . b i s e c t o r s o f i t s t w o c h o r d s , P P 1 , P P 2 m e e t a t c e n t e r B . B i s i t s c i r c u m c e n t e r . M i d p o i n t o f h y p o t e n u s e A C i s t h e c i r c u m c e n t e r o f Δ A B C . S o B t o t h i s m i d p o i n t , w h i c h i s a l s o c i r c u m r a d i u s o f Δ A B C . c i r c u m r a d i u s = 1 2 A C . Since~P_1~is ~reflection~ of~ P~ on~BA, ~BA~is~\bot ~bisector ~of~P_1P.\\ Since~P_2~is ~reflection~ of~ P~ on~BC, ~BC~is~\bot ~bisector ~of~P_2P.\\ But~since~a ~circle~passes~through~three~points, P, P_1, P_2 ~,\\ and~PP_1~is~\bot~BA, ~~PP_2, \bot~BC, ~\Delta~P P_1 P_2 ~ is~a~right~\Delta,~at~P.\\ \bot ~bisectors ~of~its~two~chords, PP_1,~PP_2~meet~at~center~B.\\ \therefore~B~is~its~circumcenter. \\ Midpoint~of~hypotenuse~AC~is~the~circumcenter~of~\Delta~ABC.\\ So~B~to~this~midpoint, ~which~is~also~circumradius~of~\Delta~ABC.\\ \therefore~circumradius=\frac 1 2*AC.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...