KVPY #21

Geometry Level 3

Let n n be a positive integer such that

sin π 2 n + cos π 2 n = n 2 \large \sin \dfrac{π}{2n} + \cos \dfrac{π}{2n} = \dfrac{ \sqrt{n} }{2}

Then find the value of n n .


  • For more KVPY practice questions try my set 1
  • For JEE problems try my set 2


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Apr 17, 2017

Similar solution with Md Zuhair 's

sin π 2 n + cos π 2 n = n 2 Squaring both sides sin 2 π 2 n + 2 sin π 2 n cos π 2 n + cos 2 π 2 n = n 4 Note that sin 2 x + cos 2 x = 1 1 + sin π n = n 4 Note that 2 sin x cos x = sin 2 x sin π n = n 4 1 \begin{aligned} \sin \frac \pi{2n} + \cos \frac \pi{2n} & = \frac {\sqrt n}2 & \small \color{#3D99F6} \text{Squaring both sides} \\ {\color{#3D99F6}\sin^2 \frac \pi{2n}} + {\color{#D61F06}2 \sin \frac \pi{2n} \cos \frac \pi{2n}} + {\color{#3D99F6}\cos^2 \frac \pi{2n}} & = \frac n4 & \small \color{#3D99F6} \text {Note that } \sin^2 x + \cos^2 x = 1 \\ {\color{#3D99F6}1} + {\color{#D61F06}\sin \frac \pi n} & = \frac n4 & \small \color{#D61F06} \text {Note that } 2\sin x \cos x = \sin 2x \\ \implies \sin \frac \pi n & = \frac n4 - 1 \end{aligned}

Note that the RHS is rational, the LHS must be rational too. There are only three n n 's when the LHS is rational:

{ n = 1 sin π = 0 1 4 1 = 3 4 L H S R H S n = 2 sin π 2 = 1 2 4 1 = 1 2 L H S R H S n = 6 sin π 6 = 1 2 6 4 1 = 1 2 L H S = R H S \begin{cases} n = 1 & \implies \sin \pi = 0 & \implies \dfrac 14 - 1 = - \dfrac 34 & \implies \color{#D61F06} LHS \ne RHS \\ n = 2 & \implies \sin \dfrac \pi 2 = 1 & \implies \dfrac 24 - 1 = - \dfrac 12 & \implies \color{#D61F06} LHS \ne RHS \\ n = 6 & \implies \sin \dfrac \pi 6 = \dfrac 12 & \implies \dfrac 64 - 1 = \dfrac 12 & \implies \color{#3D99F6} LHS = RHS \end{cases}

n = 6 \implies n = \boxed{6}

S i n π 2 n + C o s π 2 n = n 2 . S i n π 2 1 n + S i n π 2 ( 1 1 n ) = n 2 . 2 S i n π 2 ( 1 n + 1 1 n ) C o s π 2 ( 1 n 1 + 1 n ) = n 2 . 2 S i n π 2 C o s π 2 ( 2 n 1 ) = n 2 , s q u a r i n g b o t h s i d e s , w e h a v e : C o s 2 π 2 ( 2 n 1 ) = n 4 4 . S i n c e n i s a n i n t e g e r L H S , a C o s " s q u a r e " m u s t a l s o b e r a t i o n a l . O n l y p o s s i b l e a n g l e s a r e 0 , π 6 , π 4 , π 3 , π 4 , t h e i r n e g a t i v e v a l u e s . . Sin\dfrac \pi {2n}+Cos\dfrac \pi {2n}=\dfrac{\sqrt n} 2 .\\ \therefore~Sin\dfrac \pi 2 *\dfrac 1 n+Sin\dfrac \pi 2*(1-\dfrac1 n)=\dfrac{\sqrt n} 2.\\ \implies~2*Sin\frac \pi 2 *(\frac 1 n+1-\frac1 n)*Cos\frac \pi 2 *(\frac 1 n -1+\frac 1 n)= \dfrac{\sqrt n} 2.\\ \therefore~ 2*Sin\frac \pi 2*Cos\frac \pi 2 *(\frac 2 n -1)=\dfrac{\sqrt n} 2,~~squaring~ both~sides , ~we~have:-\\ Cos^2\frac \pi 2 *(\frac 2 n -1)=\dfrac n {4*4}. \\ Since~n~is~an~integer~LHS~,a~Cos~"square"~must ~also~be~rational. \\ Only~possible~angles~ are~0, ~\frac \pi 6,~\frac \pi 4,~\frac \pi 3,~\frac \pi 4,~their~negative values..\\

Md Zuhair
Apr 16, 2017

Expression : sin π 2 n \sin \dfrac{π}{2n} + cos π 2 n = n 2 \cos \dfrac{π}{2n} =\dfrac{\sqrt{n}}{2}


To Find n n


Solution

Squaring out expression sin π 2 n \sin \dfrac{π}{2n} + cos π 2 n = n 2 \cos \dfrac{π}{2n} =\dfrac{\sqrt{n}}{2} on both sides we get

\implies sin 2 π 2 n \sin^2 \dfrac{π}{2n} + cos 2 π 2 n + 2 sin π 2 n cos π 2 n = n 4 \cos^2 \dfrac{π}{2n} + 2\sin \dfrac {\pi}{2n} \cos \dfrac{\pi}{2n}=\dfrac{n}{4} 1 + s i n π n = n 4 \implies 1 + sin \dfrac{\pi}{n} = \dfrac{n}{4}

s i n π n = n 4 1 \implies sin \dfrac{\pi}{n} = \dfrac{n}{4} - 1

s i n π n = n 4 4 \implies sin \dfrac{\pi}{n} = \dfrac{n-4}{4}

This equation is satisfied by only n = 6 n=6 [Determined by graph]

So n = 6 \boxed{n=6}


Q . E . D Q.E.D

hey....zuhair!!

What does QED mean?

Ankit Kumar Jain - 4 years ago

Log in to reply

@Ankit Kumar Jain It stands for Quod Erat Demonstrandum which mean "what was to be demonstrated". Some may also use a less direct translation instead: "thus it has been demonstrated."

Aaghaz Mahajan - 3 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...