KVPY #7

Algebra Level 4

Find the sum of first nine terms of the sum 1 3 1 \frac{1^{3}}{1} + 1 3 + 2 3 1 + 3 \frac{1^{3} + 2^{3}}{1+3} + 1 3 + 2 3 + 3 3 1 + 3 + 5 \frac{1^{3} + 2^{3} + 3^{3}}{1+3+5} .......


The answer is 96.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Guilherme Niedu
Mar 25, 2017

Each term a n a_n is equal to:

a n = 1 3 + 2 3 + . . n 3 1 + 3 + . . . 2 n 1 \large \displaystyle a_n = \frac{1^3 + 2^3 + .. n^3}{1 + 3 + ... 2n-1}

a n = ( n ( n + 1 ) 2 ) 2 ( 2 n 1 + 1 ) n 2 \large \displaystyle a_n = \frac{\Big (\frac{ n(n+1)}{2} \Big) ^2 }{ \frac{(2n-1 + 1)n}{2} }

a n = ( n + 1 ) 2 4 \color{#20A900} \boxed { \large \displaystyle a_n = \frac{ (n+1)^2}{4} }

The sum of the first K K terms is:

S K = n = 1 K a n \large \displaystyle S_K = \sum_{n=1}^K a_n

S K = 1 4 n = 1 K ( n + 1 ) 2 \large \displaystyle S_K = \frac14 \sum_{n=1}^K (n+1)^2

Setting m = n + 1 m = n+1

S K = 1 4 m = 2 K + 1 m 2 \large \displaystyle S_K = \frac14 \sum_{m=2}^{K+1} m^2

S K = 1 4 ( m = 1 K + 1 m 2 1 ) \large \displaystyle S_K = \frac14 \left( \sum_{m=1}^{K+1} m^2 - 1 \right )

S K = 1 4 [ ( K + 1 ) ( K + 2 ) ( 2 K + 3 ) 6 1 ] \large \displaystyle S_K = \frac14 \left [ \frac{(K+1)(K+2)(2K+3)}{6} - 1 \right ]

S K = 2 K 3 + 9 K 2 + 13 K 24 \color{#20A900} \boxed { \large \displaystyle S_K = \frac{2K^3 + 9K^2 + 13K}{24} }

We're looking for S 9 S_9 :

S 9 = 2 9 3 + 9 9 2 + 13 9 24 \large \displaystyle S_9 = \frac{2 \cdot 9^3 + 9 \cdot 9^2 + 13 \cdot 9}{24}

S 9 = 96 \color{#3D99F6} \boxed { \large \displaystyle S_9 = 96}

This was level 5?

Rohith M.Athreya - 4 years, 2 months ago

Log in to reply

Yes. Same reactions!

Tapas Mazumdar - 4 years, 2 months ago

1st term : \text{1st term}: 1 2 1 2 = 1 \frac{1^2}{1^2} = 1

2nd term : \text{2nd term}: 3 2 2 2 = 9 4 \frac{3^2}{2^2} = \frac{9}{4}

3rd term : \text{3rd term}: 6 2 3 2 = 36 9 \frac{6^2}{3^2} = \frac{36}{9}

4th term : \text{4th term}: 1 0 2 4 2 = 100 16 \frac{10^2}{4^2} = \frac{100}{16}

5th term : \text{5th term}: 1 5 2 5 2 = 225 25 \frac{15^2}{5^2} = \frac{225}{25}

6th term : \text{6th term}: 2 1 2 6 2 = 441 36 \frac{21^2}{6^2} = \frac{441}{36}

7th term : \text{7th term}: 2 8 2 7 2 = 784 49 \frac{28^2}{7^2} = \frac{784}{49}

8th term : \text{8th term}: 3 6 2 8 2 = 1296 64 \frac{36^2}{8^2} = \frac{1296}{64}

9th term : \text{9th term}: 4 5 2 9 2 = 2025 81 \frac{45^2}{9^2} = \frac{2025}{81}

s u m = 1 + 9 4 + 36 9 + 100 16 + 225 25 + 441 36 + 784 49 + 1296 64 + 2025 81 = sum = 1 + \frac{9}{4} + \frac{36}{9} + \frac{100}{16} + \frac{225}{25} + \frac{441}{36} + \frac{784}{49} + \frac{1296}{64} + \frac{2025}{81} = 96 \color{#624F41}\large\boxed{96}

It is a very lengthy method to solve such a question..

Rahil Sehgal - 4 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...